1
|
Aranda-Caraballo J, Saenz RA, López-Zavala AA, Velazquez-Cruz B, Espinosa-Barrera L, Cárdenas-Conejo Y, Zárate-Romero A, Linares-Vergara O, Osuna-Castro JA, Bonales-Alatorre E, Centeno-Leija S, Serrano-Posada H. Binding Specificity of a Novel Cyclo/Maltodextrin-Binding Protein and Its Role in the Cyclodextrin ABC Importer System from Thermoanaerobacterales. Molecules 2023; 28:6080. [PMID: 37630332 PMCID: PMC10458862 DOI: 10.3390/molecules28166080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Extracellular synthesis of functional cyclodextrins (CDs) as intermediates of starch assimilation is a convenient microbial adaptation to sequester substrates, increase the half-life of the carbon source, carry bioactive compounds, and alleviate chemical toxicity through the formation of CD-guest complexes. Bacteria encoding the four steps of the carbohydrate metabolism pathway via cyclodextrins (CM-CD) actively internalize CDs across the microbial membrane via a putative type I ATP-dependent ABC sugar importer system, MdxEFG-(X/MsmX). While the first step of the CM-CD pathway encompasses extracellular starch-active cyclomaltodextrin glucanotransferases (CGTases) to synthesize linear dextrins and CDs, it is the ABC importer system in the second step that is the critical factor in determining which molecules from the CGTase activity will be internalized by the cell. Here, structure-function relationship studies of the cyclo⁄maltodextrin-binding protein MdxE of the MdxEFG-MsmX importer system from Thermoanaerobacter mathranii subsp. mathranii A3 are presented. Calorimetric and fluorescence studies of recombinant MdxE using linear dextrins and CDs showed that although MdxE binds linear dextrins and CDs with high affinity, the open-to-closed conformational change is solely observed after α- and β-CD binding, suggesting that the CM-CD pathway from Thermoanaerobacterales is exclusive for cellular internalization of these molecules. Structural analysis of MdxE coupled with docking simulations showed an overall architecture typically found in sugar-binding proteins (SBPs) that comprised two N- and C-domains linked by three small hinge regions, including the conserved aromatic triad Tyr193/Trp269/Trp378 in the C-domain and Phe87 in the N-domain involved in CD recognition and stabilization. Structural bioinformatic analysis of the entire MdxFG-MsmX importer system provided further insights into the binding, internalization, and delivery mechanisms of CDs. Hence, while the MdxE-CD complex couples to the permease subunits MdxFG to deliver the CD into the transmembrane channel, the dimerization of the cytoplasmatic promiscuous ATPase MsmX triggers active transport into the cytoplasm. This research provides the first results on a novel thermofunctional SBP and its role in the internalization of CDs in extremely thermophilic bacteria.
Collapse
Affiliation(s)
- Jorge Aranda-Caraballo
- Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico; (J.A.-C.); (B.V.-C.); (L.E.-B.); (O.L.-V.)
| | - Roberto A. Saenz
- Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, Colima 28045, Mexico;
| | - Alonso A. López-Zavala
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Beatriz Velazquez-Cruz
- Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico; (J.A.-C.); (B.V.-C.); (L.E.-B.); (O.L.-V.)
| | - Laura Espinosa-Barrera
- Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico; (J.A.-C.); (B.V.-C.); (L.E.-B.); (O.L.-V.)
| | - Yair Cárdenas-Conejo
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico;
| | - Andrés Zárate-Romero
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 CarreteraTijuana-Ensenada, Ensenada 22860, Mexico;
| | - Oscar Linares-Vergara
- Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico; (J.A.-C.); (B.V.-C.); (L.E.-B.); (O.L.-V.)
| | - Juan A. Osuna-Castro
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Autopista Colima-Manzanillo, Tecomán 28100, Mexico;
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colonia Villa de San Sebastián, Colima 28045, Mexico;
| | - Sara Centeno-Leija
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico;
| | - Hugo Serrano-Posada
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Laboratorio de Biología Sintética, Estructural y Molecular, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico;
| |
Collapse
|
2
|
Gatiatulin AK, Grishin IA, Buzyurov AV, Mukhametzyanov TA, Ziganshin MA, Gorbatchuk VV. Determination of Melting Parameters of Cyclodextrins Using Fast Scanning Calorimetry. Int J Mol Sci 2022; 23:13120. [PMID: 36361919 PMCID: PMC9655725 DOI: 10.3390/ijms232113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 10/23/2023] Open
Abstract
The first evidence of native cyclodextrins fusion was registered using fast scanning calorimetry (FSC) with heating rates up to 40,000 K s-1. The endothermal effects, detected at low heating rates, correspond to the decomposition processes. Upon the increase of the heating rate the onset of these effects shifts to higher temperatures, reaching a limiting value at high heating rates. The limiting temperatures were identified as the melting points of α-, β- and γ-cyclodextrins, as the decomposition processes are suppressed at high heating rates. For γ-cyclodextrin the fusion enthalpy was measured. The activation energies of thermal decomposition of cyclodextrins were determined by dependence of the observed thermal effects on heating rates from 4 K min-1 in conventional differential scanning calorimetry to 40,000 K s-1 in FSC. The lower thermal stability and activation energy of decomposition of β-cyclodextrin than for the other two cyclodextrins were found, which may be explained by preliminary phase transition and chemical reaction without mass loss. The obtained values of fusion parameters of cyclodextrins are needed in theoretical models widely used for prediction of solubility and solution rates and in preparation of cyclodextrin inclusion compounds involving heating.
Collapse
Affiliation(s)
- Askar K. Gatiatulin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya, 420008 Kazan, Russia
| | | | | | | | | | | |
Collapse
|
3
|
Arun M, Bigger S, Guerrieri M, Joseph P, Tretsiakova-McNally S. Thermal and Calorimetric Investigations of Some Phosphorus-Modified Chain Growth Polymers 2: Polystyrene. Polymers (Basel) 2022; 14:polym14081520. [PMID: 35458268 PMCID: PMC9029487 DOI: 10.3390/polym14081520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
In this paper, we report on the thermal degradation behaviours and combustion attributes of some polymers based on polystyrene (PSt). Here, both additive and reactive strategies were employed, through the bulk polymerization route, where the modifying groups incorporated P-atom in various chemical environments. These included oxidation states of III or V, and the loading of phosphorus was kept at ca. 2 wt.% in all cases. The characterization techniques that were employed for the recovered products included spectroscopic, thermal, and calorimetric. It was found that the presence of different modifying groups influenced the degradation characteristics of the base polymer, and also exerted varying degrees of combustion inhibition. In all cases, the modification of the base matrix resulted in a noticeable degree of fire retardance as compared to that of the virgin material. Therefore, some of the modifications presented have the potential to be explored on a commercial scale.
Collapse
Affiliation(s)
- Malavika Arun
- Institute of Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (S.B.); (M.G.)
- Correspondence: (M.A.); (P.J.); Tel.: +61-410-279-828 (M.A.)
| | - Stephen Bigger
- Institute of Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (S.B.); (M.G.)
| | - Maurice Guerrieri
- Institute of Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (S.B.); (M.G.)
| | - Paul Joseph
- Institute of Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (S.B.); (M.G.)
- Correspondence: (M.A.); (P.J.); Tel.: +61-410-279-828 (M.A.)
| | | |
Collapse
|
4
|
Arun M, Bigger S, Guerrieri M, Joseph P, Tretsiakova-McNally S. Thermal and Calorimetric Investigations of Some Phosphorus-Modified Chain Growth Polymers 1: Polymethyl Methacrylate. Polymers (Basel) 2022; 14:polym14071447. [PMID: 35406320 PMCID: PMC9002683 DOI: 10.3390/polym14071447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
The thermal and calorimetric characterizations of polymethyl methacrylate-based polymers are reported in this paper. The modifying groups incorporated the phosphorus atom in various chemical environments, including oxidation states of III, or V. Both additive and reactive strategies were employed, where the loading of phosphorus was kept at 2 wt% in all cases. The plaques, obtained through the bulk polymerization route, were subjected to a variety of spectroscopic, thermal and combustion techniques. The results showed that the different modifying groups exerted varying nature, degrees and modes of combustion behaviors, which also included in some cases an additive, and even an antagonistic effect. In the case of covalently-bound phosphonate groups, early cracking of the pendent ester moieties was shown to produce phosphoric acid species, which in turn can act in the condensed phase. For the additives, such as phosphine and phosphine oxide, limited vapor-phase inhibition can be assumed to be operative.
Collapse
Affiliation(s)
- Malavika Arun
- Institute of Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (S.B.); (M.G.); (P.J.)
- Correspondence: ; Tel.: +61-410-279-828
| | - Stephen Bigger
- Institute of Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (S.B.); (M.G.); (P.J.)
| | - Maurice Guerrieri
- Institute of Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (S.B.); (M.G.); (P.J.)
| | - Paul Joseph
- Institute of Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (S.B.); (M.G.); (P.J.)
| | | |
Collapse
|
5
|
Li H, Wang N, Han X, Yuan H, Xie J. Mechanism Identification and Kinetics Analysis of Thermal Degradation for Carbon Fiber/Epoxy Resin. Polymers (Basel) 2021; 13:polym13040569. [PMID: 33672880 PMCID: PMC7917751 DOI: 10.3390/polym13040569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
For carbon fiber epoxy resin used in aerostructure, thermal degradation mechanism and kinetics play an important role in the evaluation of thermal response and combustion characteristics. However, the thermal decomposition process and mechanism are difficult to unify strictly due to the complexity of the components from different suppliers. In the present study, a product of carbon fiber epoxy resin made by AVIC (Aviation Industry Corporation of China) composite corporation is examined to identify its thermal degradation mechanism and pyrolysis products by measurements, including simultaneous thermal analysis, Fourier transform infrared spectroscopy and mass spectrometry, establish the kinetic model by Kissinger/Friedman/Ozawa/Coats-Redfern methods. The results show thermal degradation occurs in three steps under the inert atmosphere, but in four steps under air atmosphere, respectively. The first two steps in both environments are almost the same, including drying, carbon dioxide escape and decomposition of the epoxy resin. In the third step of inert atmosphere, phenol is formed, methane decreases, carbon monoxide basically disappears and carbon dioxide production increases. However, in air, thermal oxidation of the carbonaceous residues and intermolecular carbonization are observed. Furthermore, thermal degradation reaction mechanism submits to the F4 model. These results provide fundamental and comprehensive support for the application of carbon fiber epoxy resin in aircraft industry.
Collapse
|
6
|
An Efficient Approach to Prepare Water-Redispersible Starch Nanocrystals from Waxy Potato Starch. Polymers (Basel) 2021; 13:polym13030431. [PMID: 33572951 PMCID: PMC7866399 DOI: 10.3390/polym13030431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Starch nanocrystals (SNCs) are a biodegradable polymer which has been widely studied and used in many fields. In this study, we have developed an efficient procedure for the preparation of SNCs. First, sodium hexametaphosphate (SHMP) and vinyl acetate (VAC) were used to modify waxy potato starch (WPS). Then, the modified starches were hydrolyzed with sulfuric acid to prepare SNCs. Results showed that SNCs prepared with modified starch had higher zeta potentials and better dispersion properties than the original starch. After modification, WPS still maintained its semi-crystalline structure, but the surface became rougher. SHMP-modified WPS showed a decrease in viscosity peak and an increase in gelatinization temperature. VAC-modified WPS showed increased swelling power. Additionally, SNCs prepared with VAC-modified WPS had better water redispersibility and dispersion stability than those from SHMP-modified starch—which will have broader application prospects in the field of safe and biodegradable food packaging.
Collapse
|