1
|
Drozdova M, Vodyakova M, Tolstova T, Chernogortseva M, Sazhnev N, Demina T, Aksenova N, Timashev P, Kildeeva N, Markvicheva E. Composite Hydrogels Based on Cross-Linked Chitosan and Low Molecular Weight Hyaluronic Acid for Tissue Engineering. Polymers (Basel) 2023; 15:polym15102371. [PMID: 37242945 DOI: 10.3390/polym15102371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The objectives of the study were as follows: (1) to develop two methods for the preparation of macroporous composite chitosan/hyaluronic acid (Ch/HA) hydrogels based on covalently cross-linked Ch and low molecular weight (Mw) HA (5 and 30 kDa); (2) to investigate some properties (swelling and in vitro degradation) and structures of the hydrogels; (3) to evaluate the hydrogels in vitro as potential biodegradable matrices for tissue engineering. Chitosan was cross-linked with either genipin (Gen) or glutaraldehyde (GA). Method 1 allowed the distribution of HA macromolecules within the hydrogel (bulk modification). In Method 2, hyaluronic acid formed a polyelectrolyte complex with Ch over the hydrogel surface (surface modification). By varying compositions of the Ch/HA hydrogels, highly porous interconnected structures (with mean pore sizes of 50-450 μm) were fabricated and studied using confocal laser scanning microscopy (CLSM). Mouse fibroblasts (L929) were cultured in the hydrogels for 7 days. Cell growth and proliferation within the hydrogel samples were studied via MTT-assay. The entrapment of low molecular weight HA was found to result in an enhancement of cell growth in the Ch/HA hydrogels compared to that in the Ch matrices. The Ch/HA hydrogels after bulk modification promoted better cell adhesion, growth and proliferation than the samples prepared by using Method 2 (surface modification).
Collapse
Affiliation(s)
- Maria Drozdova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Marina Vodyakova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Tatiana Tolstova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Marina Chernogortseva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin Russian State University, 1 Malaya Kaluzhskaya Str., 119071 Moscow, Russia
| | - Nikita Sazhnev
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin Russian State University, 1 Malaya Kaluzhskaya Str., 119071 Moscow, Russia
| | - Tatiana Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Nadezhda Aksenova
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Nataliya Kildeeva
- Department of Chemistry and Technology of Polymer Materials and Nanocomposites, The Kosygin Russian State University, 1 Malaya Kaluzhskaya Str., 119071 Moscow, Russia
| | - Elena Markvicheva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
2
|
Electrospinning vs. Electro-Assisted Solution Blow Spinning for Fabrication of Fibrous Scaffolds for Tissue Engineering. Polymers (Basel) 2022; 14:polym14235254. [PMID: 36501648 PMCID: PMC9740951 DOI: 10.3390/polym14235254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Biodegradable polymeric fibrous non-woven materials are widely used type of scaffolds for tissue engineering. Their morphology and properties could be controlled by composition and fabrication technology. This work is aimed at development of fibrous scaffolds from a multicomponent polymeric system containing biodegradable synthetic (polylactide, polycaprolactone) and natural (gelatin, chitosan) components using different methods of non-woven mats fabrication: electrospinning and electro-assisted solution blow spinning. The effect of the fabrication technique of the fibrous materials onto their morphology and properties, including the ability to support adhesion and growth of cells, was evaluated. The mats fabricated using electrospinning technology consist of randomly oriented monofilament fibers, while application of solution blow spinning gave a rise to chaotically arranged multifilament fibers. Cytocompatibility of all fabricated fibrous mats was confirmed using in vitro analysis of metabolic activity, proliferative capacity and morphology of NIH 3T3 cell line. Live/Dead assay revealed the formation of the highest number of cell-cell contacts in the case of multifilament sample formed by electro-assisted solution blow spinning technology.
Collapse
|
3
|
Minaeva ED, Kuryanova AS, Dulyasova AA, Minaeva SA, Minaev NV, Kostjuk SV, Demina TS, Akopova TA, Timashev PS. Laser Technology of Directional Microstructuring of Biodegradable Nonwovens. HIGH ENERGY CHEMISTRY 2022. [DOI: 10.1134/s0018143922020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Demina TS, Akopova TA, Zelenetsky AN. Materials Based on Chitosan and Polylactide: From Biodegradable Plastics to Tissue Engineering Constructions. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The transition to green chemistry and biodegradable polymers is a logical stage in the development of modern chemical science and technology. In the framework of this review, the advantages, disadvantages, and potential of biodegradable polymers of synthetic and natural origin are compared using the example of polylactide and chitosan as traditional representatives of these classes of polymers, and the possibilities of their combination via obtaining composite materials or copolymers are assessed. The mechanochemical approach to the synthesis of graft copolymers of chitosan with oligolactides/polylactides is considered in more detail.
Collapse
|
5
|
Popyrina TN, Svidchenko EA, Demina TS, Akopova TA, Zelenetsky AN. Effect of the Chemical Structure of Chitosan Copolymers with Oligolactides on the Morphology and Properties of Macroporous Hydrogels Based on Them. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|