1
|
Verebélyi K, Szabó Á, Réti Z, Szarka G, Villányi Á, Iván B. Highly Efficient Cationic Polymerization of β-Pinene, a Bio-Based, Renewable Olefin, with TiCl4 Catalyst from Cryogenic to Energy-Saving Room Temperature Conditions. Int J Mol Sci 2023; 24:ijms24065170. [PMID: 36982242 PMCID: PMC10048798 DOI: 10.3390/ijms24065170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Polymers based on renewable monomers are projected to have a significant role in the sustainable economy, even in the near future. Undoubtedly, the cationically polymerizable β-pinene, available in considerable quantities, is one of the most promising bio-based monomers for such purposes. In the course of our systematic investigations related to the catalytic activity of TiCl4 on the cationic polymerization of this natural olefin, it was found that the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4/N,N,N′,N′-tetramethylethylenediamine (TMEDA) initiating system induced efficient polymerization in dichloromethane (DCM)/hexane (Hx) mixture at both −78 °C and room temperature. At −78 °C, 100% monomer conversion was observed within 40 min, resulting in poly(β-pinene) with relatively high Mn (5500 g/mol). The molecular weight distributions (MWD) were uniformly shifted towards higher molecular weights (MW) in these polymerizations as long as monomer was present in the reaction mixture. However, chain–chain coupling took place after reaching 100% conversion, i.e., under monomer-starved conditions, resulting in considerable molecular weight increase and MWD broadening at −78 °C. At room temperature, the polymerization rate was lower, but chain coupling did not occur. The addition of a second feed of monomer in the polymerization system led to increasing conversion and polymers with higher MWs at both temperatures. 1H NMR spectra of the formed polymers indicated high in-chain double-bond contents. To overcome the polarity decrease by raising the temperature, polymerizations were also carried out in pure DCM at room temperature and at −20 °C. In both cases, rapid polymerization occurred with nearly quantitative yields, leading to poly(β-pinene)s with Mns in the range of 2000 g/mol. Strikingly, polymerization by TiCl4 alone, i.e., without any additive, also occurred with near complete conversion at room temperature within a few minutes, attributed to initiation by adventitious protic impurities. These results convincingly prove that highly efficient carbocationic polymerization of the renewable β-pinene can be accomplished with TiCl4 as catalyst under both cryogenic conditions, applied widely for carbocationic polymerizations, and the environmentally benign, energy-saving room temperature, i.e., without any additive and cooling or heating. These findings enable TiCl4-catalyzed eco-friendly manufacturing of poly(β-pinene)s, which can be utilized in various applications, and in addition, subsequent derivatizations could result in a range of high-added-value products.
Collapse
|
2
|
Green Copolymers and Nanocomposites from Myrcene and Limonene Using Algerian Nano-Clay as Nano-Reinforcing Filler. Polymers (Basel) 2022; 14:polym14235271. [PMID: 36501664 PMCID: PMC9739573 DOI: 10.3390/polym14235271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
In this work, we report a new facile method for the preparation of myrcene-limonene copolymers and nanocomposites using a Lewis acid as a catalyst (AlCl3) and organo-modified clay as a nano-reinforcing filler. The copolymer (myr-co-lim) was prepared by cationic copolymerization using AlCl3 as a catalyst. The structure of the obtained copolymer is studied and confirmed by Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, and Differential Scanning Calorimetry. By improving the dispersion of the matrix polymer in sheets of the organoclay, Maghnite-CTA+ (Mag-CTA+), an Algerian natural organophilic clay, was used to preparenanocomposites of linear copolymer (myr-co-lim). In order to identify and assess their structural, morphological, and thermal properties, the effect of the organoclay, used in varyingamounts (1, 4, 7, and 10% by weight), and the preparation process were investigated. The Mag-CTA+ is an organophylic montmorillonite silicate clay prepared through a direct exchange process in which they were used as green nano-reinforcing filler. The X-ray diffraction of the resulting nanocomposites revealed a considerable alteration in the interlayer spacing of Mag-CTA+. As a result, interlayer expansion and myr-co-lim exfoliation between layers of Mag-CTA+ were observed. Thermogravimetric analysis provided information on the synthesized nanocomposites' thermal properties. Fourier transform infrared spectroscopy and scanning electronic microscopy, respectively, were used to determine the structure and morphology of the produced nanocomposites (myr-co-lim/Mag). The intercalation of myr-co-lim in the Mag-CTA+ sheets has been supported by the results, and the optimum amount of organoclay needed to create a nanocomposite with high thermal stability is 10% by weight. Finally, a new method for the preparation of copolymer and nanocomposites from myrcene and limonene in a short reaction time was developed.
Collapse
|
3
|
Derdar H, Mitchell GR, Chaibedraa S, Mahendra VS, Cherifi Z, Bachari K, Chebout R, Touahra F, Meghabar R, Belbachir M. Synthesis and Characterization of Copolymers and Nanocomposites from Limonene, Styrene and Organomodified-Clay Using Ultrasonic Assisted Method. Polymers (Basel) 2022; 14:polym14142820. [PMID: 35890596 PMCID: PMC9316819 DOI: 10.3390/polym14142820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
In the present work, we report a simple synthesis method for preparation of copolymers and nanocomposites from limonene and styrene using clay as a catalyst. The copolymerization reaction is carried out by using a proton exchanged clay as a catalyst called Mag-H+. The effect of temperature, reaction time and amount of catalyst were studied, and the obtained copolymer structure (lim-co-sty) is characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR) and differential scanning calorimetry (DSC). The molecular weight of the obtained copolymer is determined by gel permeation chromatography (GPC) and is about 4500 g·mol−1. The (lim-co-sty/Mag 1%, 3%, 7% and 10% by weight of clay) nanocomposites were prepared through polymer/clay mixture in solution method using ultrasonic irradiation, in the presence of Mag-CTA+ as green nano-reinforcing filler. The Mag-CTA+ is organophilic silicate clay prepared through a direct exchange process, using cetyltrimethylammonuim bromide (CTAB). The prepared lim-co-sty/Mag nanocomposites have been extensively characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM). TEM analysis confirms the results obtained by XRD and clearly show that the obtained nanocomposites are partially exfoliated for the lower amount of clay (1% and 3% wt) and intercalated for higher amounts of clay (7% and 10% wt). Moreover, thermogravimetric analysis (TGA) indicated an enhancement of thermal stability of nanocomposites compared with the pure copolymer.
Collapse
Affiliation(s)
- Hodhaifa Derdar
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| | - Geoffey Robert Mitchell
- Centre for Rapid and Sustainable Product Development, Institute Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal
- Correspondence: ; Tel.: +351-244-569-441 or +351-962-426-925 or +44-7768-978014; Fax: +351-244-569-444
| | - Sarra Chaibedraa
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| | | | - Zakaria Cherifi
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
| | - Redouane Chebout
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
| | - Fouzia Touahra
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 10 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP, Tipaza 42004, Algeria; (H.D.); (Z.C.); (K.B.); (R.C.); (F.T.)
| | - Rachid Meghabar
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| | - Mohammed Belbachir
- Laboratoire de Chimie des Polymères (LCP), Département de Chimie, FSEA, Oran1 University Ahmed Benbella BP N° 1524 El M’Naouar, Oran 31000, Algeria; (S.C.); (R.M.); (M.B.)
| |
Collapse
|
4
|
Aiche SS, Derdar H, Cherifi Z, Belbachir M, Meghabar R. Activation and Characterization of Algerian Kaolinite, New and Green Catalyst for Synthesis of Polystyrene and Poly(1,3-dioxolane). CHEMISTRY & CHEMICAL TECHNOLOGY 2021. [DOI: 10.23939/chcht15.04.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present work we have explored a new catalyst prepared with Algerian clay and a new method to synthesise polystyrene and poly(1,3-dioxolane). This technique consists of using Algerian modified clay (Kaolinite-H+) as a green catalyst. Kaolinite-H+ is a proton exchanged clay which is prepared through a simple exchange process. Synthesis experiments are performed in bulk. The polymerization of styrene in bulk leads to the yield of 83 % at room temperature with the reaction time of 3 h. Molecular weight of the obtained polystyrene is calculated by 1H NMR and is about 2196 g/mol. Polymerization of (1,3-dioxolane) is carried out at room temperature with the reaction time of 3 h and polymerization yield of 91 %. The calculated molecular weight of the obtained poly(1,3-dioxolane) is about 573 g/mol. The structure of the obtained polymers is confirmed by FT-IR and 1H NMR. The modified clay (Kaolinite-H+) is characterized by FT-IR, XRD and SEM analysis.
Collapse
|
5
|
Zinelabidine Otmane Elabed, Kherroub DE, Derdar H, Belbachir M. Novel Cationic Polymerization of β-Myrcene Using a Proton Exchanged Clay (Maghnite-H+). POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Hodhaifa Derdar, Meghabar R, Benachour M, Mitchell GR, Bachari K, Belbachir M, Cherifi Z, Baghdadli MC, Harrane A. Polymer-Clay Nanocomposites: Exfoliation and Intercalation of Organophilic Montmorillonite Nanofillers in Styrene–Limonene Copolymer. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21050023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Yang Y, Zhu H, Bao L, Xu X. Critical review on microfibrous composites for applications in chemical engineering. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Microfibrous composites (MCs) are novel materials with unique structures and excellent functional properties, showing great potential in industrial applications. The investigation of the physicochemical properties of MCs is significant for accommodating the rapid development of high-efficiency chemical engineering industries. In this review, the characteristics, synthesis and applications of different types of previously reported MCs are discussed according to the constituent fibres, including polymers, metals and nonmetals. Among the different types of MCs, polymer MCs have a facile synthesis process and adjustable fibre composition, making them suitable for many complex situations. The high thermal and electrical conductivity of metal MCs enables their application in strong exothermic, endothermic and electrochemical reactions. Nonmetallic MCs are usually stable and corrosion resistant when reducing and oxidizing environments. The disadvantages of MCs, such as complicated synthesis processes compared to those of particles or powders, high cost, insufficient thorough study, and unsatisfactory regeneration effects, are also summarized. As a result, a more systematic investigation of MCs remains necessary. Despite the advantages and great application potential of microfibrous composites, much effort remains necessary to advance them to the industrial level in the chemical engineering industry.
Collapse
Affiliation(s)
- Yi Yang
- College of Education for the Future , Beijing Normal University , Zhuhai 519087 , P. R. China
| | - Huiqi Zhu
- College of Education for the Future , Beijing Normal University , Zhuhai 519087 , P. R. China
| | - Lulu Bao
- College of Education for the Future , Beijing Normal University , Zhuhai 519087 , P. R. China
| | - Xuhui Xu
- College of Education for the Future , Beijing Normal University , Zhuhai 519087 , P. R. China
| |
Collapse
|