Wang Y, Yuan J, Zhao X, Yin J. Electrorheological Fluids of GO/Graphene-Based Nanoplates.
MATERIALS (BASEL, SWITZERLAND) 2022;
15:311. [PMID:
35009457 PMCID:
PMC8746257 DOI:
10.3390/ma15010311]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022]
Abstract
Due to their unique anisotropic morphology and properties, graphene-based materials have received extensive attention in the field of smart materials. Recent studies show that graphene-based materials have potential application as a dispersed phase to develop high-performance electrorheological (ER) fluids, a kind of smart suspension whose viscosity and viscoelastic properties can be adjusted by external electric fields. However, pure graphene is not suitable for use as the dispersed phase of ER fluids due to the electric short circuit caused by its high electrical conductivity under electric fields. However, graphene oxide (GO) and graphene-based composites are suitable for use as the dispersed phase of ER fluids and show significantly enhanced property. In this review, we look critically at the latest developments of ER fluids based on GO and graphene-based composites, including their preparation, electrically tunable ER property, and dispersed stability. The mechanism behind enhanced ER property is discussed according to dielectric spectrum analysis. Finally, we also propose the remaining challenges and possible developments for the future outlook in this field.
Collapse