1
|
Gazo Hanna E, Younes K, Roufayel R, Khazaal M, Fajloun Z. Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions. Heliyon 2024; 10:e26154. [PMID: 38390063 PMCID: PMC10882044 DOI: 10.1016/j.heliyon.2024.e26154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The overlap between mechanical engineering and medicine is expanding more and more over the years. Engineers are now using their expertise to design and create functional biomaterials and are continually collaborating with physicians to improve patient health. In this review, we explore the state of scientific knowledge in the areas of biomaterials, biomechanics, nanomechanics, and computational fluid dynamics (CFD) in relation to the pharmaceutical and medical industry. Focusing on current research and breakthroughs, we provide an overview of how these fields are being used to create new technologies for medical treatments of human patients. Barriers and constraints in these fields, as well as ways to overcome them, are also described in this review. Finally, the potential for future advances in biomaterials to fundamentally change the current approach to medicine and biology is also discussed.
Collapse
Affiliation(s)
- Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Mickael Khazaal
- École Supérieure des Techniques Aéronautiques et de Construction Automobile, ISAE-ESTACA, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| |
Collapse
|
2
|
Zadehnazari A. Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2129387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Amin Zadehnazari
- Department of Science, Petroleum University of Technology, Ahwaz, Iran
| |
Collapse
|
3
|
Utilization of a 3D Printed Orthodontic Distalizer for Tooth-Borne Hybrid Treatment in Class II Unilateral Malocclusions. MATERIALS 2022; 15:ma15051740. [PMID: 35268969 PMCID: PMC8911017 DOI: 10.3390/ma15051740] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022]
Abstract
This paper introduces a novel method of 3D designing and 3D printing of a hybrid orthodontic tooth-borne personalized distalizer for treatment of unilateral Class II malocclusion. Research objectives were to clinically utilize 3D printed distalizers, appraise feasibility of this technique and compare two different biocompatible photopolymers (white and transparent). Frequency of distalizers’ debonding and patients’ aesthetical perception was evaluated on the set of 12 complete orthodontic treatments. The mean duration of treatment period with a bonded distalizer was 6.4 months. All cases were adults with unilateral Class II malocclusion managed with a hybrid approach as a part of Invisalign® comprehensive treatment. Results showed that such perspective practice is feasible for 3D design and in-office 3D printing of a personalized distalizer. Results also showed no clinically significant differences between both studied biopolymers. The paper discusses an evaluation of such personalized distalizer functionality with regard to the current state of the art and compares to conventional prefabricated alternatives like a Carriere® Distalizer™ appliance. Research showed a preference of patients towards transparent biocompatible photopolymer instead of the white A2 shade. The paper concludes that additive manufacturing from dental resins is a viable method in personalization and in-office 3D printing of orthodontic auxiliaries, particularly distalizers. New materials for orthodontic 3D printing endow enhanced individualization, thus more efficient treatment.
Collapse
|
4
|
Peddireddy KR, Michieletto D, Aguirre G, Garamella J, Khanal P, Robertson-Anderson RM. DNA Conformation Dictates Strength and Flocculation in DNA-Microtubule Composites. ACS Macro Lett 2021; 10:1540-1548. [PMID: 35549144 PMCID: PMC9239750 DOI: 10.1021/acsmacrolett.1c00638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymer topology has been shown to play a key role in tuning the dynamics of complex fluids and gels. At the same time, polymer composites, ubiquitous in everyday life, have been shown to exhibit emergent desirable mechanical properties not attainable in single-species systems. Yet, how topology impacts the dynamics and structure of polymer composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA) of equal length. We couple optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites with linear DNA exhibit a strongly nonmonotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites containing ring DNA show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the decreased conformational size and increased miscibility of rings.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Gina Aguirre
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Jonathan Garamella
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Pawan Khanal
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
5
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
6
|
Fraile-Martínez O, García-Montero C, Coca A, Álvarez-Mon MA, Monserrat J, Gómez-Lahoz AM, Coca S, Álvarez-Mon M, Acero J, Bujan J, García-Honduvilla N, Asúnsolo Á, Ortega MA. Applications of Polymeric Composites in Bone Tissue Engineering and Jawbone Regeneration. Polymers (Basel) 2021; 13:polym13193429. [PMID: 34641243 PMCID: PMC8512420 DOI: 10.3390/polym13193429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023] Open
Abstract
Polymer-based composites are a group of biomaterials that exert synergic and combined activity. There are multiple reported uses of these composites in multiple biomedical areas, such as drug carriers, in wound dressings, and, more prominently, in tissue engineering and regenerative medicine. Bone grafting is a promising field in the use of polymeric composites, as this is the second most frequently transplanted organ in the United States. Advances in novel biomaterials, such as polymeric composites, will undoubtedly be of great aid in bone tissue engineering and regeneration. In this paper, a general view of bone structure and polymeric composites will be given, discussing the potential role of these components in bone tissue. Moreover, the most relevant jawbone and maxillofacial applications of polymeric composites will be revised in this article, collecting the main knowledge about this topic and emphasizing the need of further clinical studies in humans.
Collapse
Affiliation(s)
- Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Alejandro Coca
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Julio Acero
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Department of Oral and Maxillofacial Surgery, Ramon y Cajal University Hospital, University of Alcalá, 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcalá, 28801 Alcalá de Henares, Spain; (O.F.-M.); (C.G.-M.); (A.C.); (M.A.Á.-M.); (J.M.); (A.M.G.-L.); (S.C.); (M.Á.-M.); (J.B.); (N.G.-H.); (M.A.O.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| |
Collapse
|
7
|
Jummaat F, Yahya EB, Khalil H.P.S. A, Adnan AS, Alqadhi AM, Abdullah CK, A.K. AS, Olaiya NG, Abdat M. The Role of Biopolymer-Based Materials in Obstetrics and Gynecology Applications: A Review. Polymers (Basel) 2021; 13:633. [PMID: 33672526 PMCID: PMC7923797 DOI: 10.3390/polym13040633] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Biopolymers have gained tremendous attention in many daily life applications, including medical applications, in the past few years. Obstetrics and gynecology are two fields dealing with sensitive parts of the woman's body and her newborn baby, which are normally associated with many issues such as toxicity, infections, and even gene alterations. Medical professions that use screening, examination, pre, and post-operation materials should benefit from a better understanding of each type of material's characteristics, health, and even environmental effects. The underlying principles of biopolymer-based materials for different obstetric and gynecologic applications may discover various advantages and benefits of using such materials. This review presents the health impact of conventional polymer-based materials on pregnant women's health and highlights the potential use of biopolymers as a safer option. The recent works on utilizing different biopolymer-based materials in obstetric and gynecologic are presented in this review, which includes suture materials in obstetric and gynecologic surgeries, cosmetic and personal care products, vaginal health, and drug delivery; as well as a wound dressing and healing materials. This review highlights the main issues and challenges of biopolymers in obstetric and gynecologic applications.
Collapse
Affiliation(s)
- Fauziah Jummaat
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - A. S. Adnan
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | | | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Atty Sofea A.K.
- Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, Permatang Pauh 13700, Malaysia;
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Munifah Abdat
- Department of Preventive and Public Health Dentistry, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| |
Collapse
|