1
|
Classification of Textile Polymer Composites: Recent Trends and Challenges. Polymers (Basel) 2021; 13:polym13162592. [PMID: 34451132 PMCID: PMC8398028 DOI: 10.3390/polym13162592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 01/09/2023] Open
Abstract
Polymer based textile composites have gained much attention in recent years and gradually transformed the growth of industries especially automobiles, construction, aerospace and composites. The inclusion of natural polymeric fibres as reinforcement in carbon fibre reinforced composites manufacturing delineates an economic way, enhances their surface, structural and mechanical properties by providing better bonding conditions. Almost all textile-based products are associated with quality, price and consumer’s satisfaction. Therefore, classification of textiles products and fibre reinforced polymer composites is a challenging task. This paper focuses on the classification of various problems in textile processes and fibre reinforced polymer composites by artificial neural networks, genetic algorithm and fuzzy logic. Moreover, their limitations associated with state-of-the-art processes and some relatively new and sequential classification methods are also proposed and discussed in detail in this paper.
Collapse
|
2
|
Influence of Polyethylene Terephthalate Powder on Hydration of Portland Cement. Polymers (Basel) 2021; 13:polym13152551. [PMID: 34372153 PMCID: PMC8347732 DOI: 10.3390/polym13152551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023] Open
Abstract
The management of plastic waste is a massive challenge and the recycling of plastics for newer applications is a potential solution. This study investigates the feasibility of using polyethylene terephthalate (PET) powder in cementitious composites. The changes in the strength and microstructure of Portland cement incorporating PET powder with different replacement ratios were systematically analyzed through the measurements of compressive strength, isothermal calorimetry, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. In addition, the possible chemical changes of cement paste samples were studied upon exposure to different conditions, including deionized water, seawater, and simulated pore solution. Based on the test results and analysis, no apparent chemical changes were observed in the cement paste samples, regardless of the exposure conditions. In contrast, the PET powder incorporated into concrete exhibited remarkable changes, which may have occurred during the mixing process. The results also suggested that the maximum replacement ratio of PET powder should be less than 10% of the binder (by mass) to minimize its influence on cement hydration, due to the interaction between water and PET. The PET-containing samples showed the presence of calcium aluminate hydrates which were absent in the neat paste sample.
Collapse
|
3
|
Neural network-crow search model for the prediction of functional properties of nano TiO 2 coated cotton composites. Sci Rep 2021; 11:13649. [PMID: 34211049 PMCID: PMC8249465 DOI: 10.1038/s41598-021-93108-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
This paper presents a new hybrid approach for the prediction of functional properties i.e., self-cleaning efficiency, antimicrobial efficiency and ultraviolet protection factor (UPF), of titanium dioxide nanoparticles (TiO2 NPs) coated cotton fabric. The proposed approach is based on feedforward artificial neural network (ANN) model called a multilayer perceptron (MLP), trained by an optimized algorithm known as crow search algorithm (CSA). ANN is an effective and widely used approach for the prediction of extremely complex problems. Various studies have been proposed to improve the weight training of ANN using metaheuristic algorithms. CSA is a latest and an effective metaheuristic method relies on the intelligent behavior of crows. CSA has been never proposed to improve the weight training of ANN. Therefore, CSA is adopted to optimize the initial weights and thresholds of the ANN model, in order to improve the training accuracy and prediction performance of functional properties of TiO2 NPs coated cotton composites. Furthermore, our proposed algorithm i.e., multilayer perceptron with crow search algorithm (MLP-CSA) was applied to map out the complex input–output conditions to predict the optimal results. The amount of chemicals and reaction time were selected as input variables and the amount of titanium dioxide coated on cotton, self-cleaning efficiency, antimicrobial efficiency and UPF were evaluated as output results. A sensitivity analysis was carried out to assess the performance of CSA in prediction process. MLP-CSA provided excellent result that were statistically significant and highly accurate as compared to standard MLP model and other metaheuristic algorithms used in the training of ANN reported in the literature.
Collapse
|
4
|
Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering. Polymers (Basel) 2021; 13:polym13132099. [PMID: 34202211 PMCID: PMC8272018 DOI: 10.3390/polym13132099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/28/2022] Open
Abstract
This paper discusses the influence of fiber reinforcement on the properties of geopolymer concrete composites, based on fly ash, ground granulated blast furnace slag and metakaolin. Traditional concrete composites are brittle in nature due to low tensile strength. The inclusion of fibrous material alters brittle behavior of concrete along with a significant improvement in mechanical properties i.e., toughness, strain and flexural strength. Ordinary Portland cement (OPC) is mainly used as a binding agent in concrete composites. However, current environmental awareness promotes the use of alternative binders i.e., geopolymers, to replace OPC because in OPC production, significant quantity of CO2 is released that creates environmental pollution. Geopolymer concrete composites have been characterized using a wide range of analytical tools including scanning electron microscopy (SEM) and elemental detection X-ray spectroscopy (EDX). Insight into the physicochemical behavior of geopolymers, their constituents and reinforcement with natural polymeric fibers for the making of concrete composites has been gained. Focus has been given to the use of sisal, jute, basalt and glass fibers.
Collapse
|
5
|
Amor N, Noman MT, Petru M. Prediction of functional properties of nano [Formula: see text] coated cotton composites by artificial neural network. Sci Rep 2021; 11:12235. [PMID: 34112896 PMCID: PMC8192757 DOI: 10.1038/s41598-021-91733-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 11/12/2022] Open
Abstract
This paper represents the efficiency of machine learning tool, i.e., artificial neural network (ANN), for the prediction of functional properties of nano titanium dioxide coated cotton composites. A comparative analysis was performed between the predicted results of ANN, multiple linear regression (MLR) and experimental results. ANN was applied to map out the complex input-output conditions to predict the optimal results. A backpropagation ANN model called a multilayer perceptron (MLP), trained with Bayesian regularization were used in this study. The amount of chemicals and reaction time were selected as input variables and the amount of titanium dioxide coated on cotton, self-cleaning efficiency, antimicrobial efficiency and ultraviolet protection factor were analysed as output results. The accuracy of the proposed algorithm was evaluated and compared with MLR results. The obtained results reveal that MLP provides efficient results that are statistically significant in the prediction of functional properties ([Formula: see text]) compared to MLR. The correlation coefficient of MLP model ([Formula: see text]) indicates that there is a strong correlation between the measured and predicted functional properties with a trivial mean absolute error and root mean square errors values. MLP model is suitable for the functional properties and can be used for the investigation of other properties of nano coated fabrics.
Collapse
Affiliation(s)
- Nesrine Amor
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
| | - Muhammad Tayyab Noman
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
| | - Michal Petru
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic
| |
Collapse
|
6
|
Abdellah MY, Hassan MK, Mohamed AF, Khalil KA. A Novel and Highly Effective Natural Vibration Modal Analysis to Predict Nominal Strength of Open Hole Glass Fiber Reinforced Polymer Composites Structure. Polymers (Basel) 2021; 13:polym13081251. [PMID: 33921438 PMCID: PMC8070468 DOI: 10.3390/polym13081251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Glass fiber reinforced polymer (GFRP) composite laminates are considered the key material in many industries such as the infrastructure industries and the aerospace sector, and in building structures due to their superior specific strength and lightweight properties. The prediction of specimens’ nominal strength with open holes is still an attractive and questionable field of study. The specimen size effect is referred to its strength degradation due to the presence of holes when specimen geometry gets scaled. The non-destructive test used to measure the nominal strength of such material is a great tool for fast selection purposes, but not secure enough for several purposes. Furthermore, the destructive tests which are more expensive and time-consuming should be avoided in such structures. The present work aims to predict the nominal strength of open-hole GFRP’s composite using modal analysis of their natural frequency as non-destructive tests. At this end, the natural frequency, which is measured using modal analysis procedures, is combined with both linear elastic fracture mechanics (LEFM) and the theory of elasticity to predict the nominal strength of open-hole composite laminates. This advanced model employs two parameters of surface release energy resulting from a simple tension test and Young’s modulus based on vibration modal analysis. It is well established that these types of materials are also subjected to a size effect in dynamic response. Inversely to the known static loading size effect, the size effect in dynamic response increases with specimen size. The novel model gives excellent and acceptable results when compared with experimental and finite element ones. Size effects curves of a nominal strength of these laminates have a very close relative value with those obtained from finite element and analytical modeling. Moreover, the received design tables and graphs would be highly applicable when selecting suitable materials for similar industrial applications.
Collapse
Affiliation(s)
- Mohammed Y. Abdellah
- Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83521, Egypt
- Correspondence: (M.Y.A.); (M.K.H.); (A.F.M.); (K.A.K.)
| | - Mohamed K. Hassan
- Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Production Engineering & Design Department, Faculty of Engineering, Minia University, Minia 61111, Egypt
- Correspondence: (M.Y.A.); (M.K.H.); (A.F.M.); (K.A.K.)
| | - Ahmed F. Mohamed
- Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Mechanical Engineering Department, Faculty of Engineering, Sohag University, Sohag 82524, Egypt
- Correspondence: (M.Y.A.); (M.K.H.); (A.F.M.); (K.A.K.)
| | - Khalil Abdelrazek Khalil
- Mechanical and Nuclear Engineering Department, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, Aswan 81521, Egypt
- Correspondence: (M.Y.A.); (M.K.H.); (A.F.M.); (K.A.K.)
| |
Collapse
|
7
|
Noman MT, Amor N, Petru M, Mahmood A, Kejzlar P. Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres. Polymers (Basel) 2021; 13:polym13081227. [PMID: 33920272 PMCID: PMC8070503 DOI: 10.3390/polym13081227] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc oxide (ZnO) in various nano forms (nanoparticles, nanorods, nanosheets, nanowires and nanoflowers) has received remarkable attention worldwide for its functional diversity in different fields i.e., paints, cosmetics, coatings, rubber and composites. The purpose of this article is to investigate the role of photocatalytic activity (role of photogenerated radical scavengers) of nano ZnO (nZnO) for the surface activation of polymeric natural fibres especially cotton and their combined effect in photocatalytic applications. Photocatalytic behaviour is a crucial property that enables nZnO as a potential and competitive candidate for commercial applications. The confirmed features of nZnO were characterised by different analytical tools, i.e., scanning electron microscopy (SEM), field emission SEM (FESEM) and elemental detection spectroscopy (EDX). These techniques confirm the size, morphology, structure, crystallinity, shape and dimensions of nZnO. The morphology and size play a crucial role in surface activation of polymeric fibres. In addition, synthesis methods, variables and some of the critical aspects of nZnO that significantly affect the photocatalytic activity are also discussed in detail. This paper delineates a vivid picture to new comers about the significance of nZnO in photocatalytic applications.
Collapse
Affiliation(s)
- Muhammad Tayyab Noman
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic; (N.A.); (M.P.)
- Correspondence: ; Tel.: +420-776396302
| | - Nesrine Amor
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic; (N.A.); (M.P.)
| | - Michal Petru
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic; (N.A.); (M.P.)
| | - Aamir Mahmood
- Department of Material Engineering, Faculty of Textile Engineering, Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic;
| | - Pavel Kejzlar
- Department of Material Science, Faculty of Mechanical Engineering, Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic;
| |
Collapse
|
8
|
Oh JH, Park CH. The Effect of Fiber Type and Yarn Diameter on Superhydrophobicity, Self-Cleaning Property, and Water Spray Resistance. Polymers (Basel) 2021; 13:817. [PMID: 33800087 PMCID: PMC7962189 DOI: 10.3390/polym13050817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we proved that micro/micro hierarchical structures are enough to achieve a superhydrophobic surface using polydimethylsiloxane (PDMS) dip-coating. Furthermore, the effect of fiber type and yarn diameter on superhydrophobicity and water spray resistance was investigated. Polyester fabrics with two types of fibers (staple fabric and filament) and three types of yarn diameters (177D, 314D, and 475D) were used. The changes in the surface properties and chemical composition were investigated. Static contact angles and shedding angles were measured for superhydrophobicity, and the self-cleaning test was conducted. Water spray repellency was also tested, as well as the water vapor transmission rate and air permeability. The PDMS-coated staple fabric showed better superhydrophobicity and oleophobicity than the PDMS-coated filament fabric, while the filament fabric showed good self-cleaning property and higher water spray repellency level. When the yarn diameter increased, the fabrics needed higher PDMS concentrations and longer coating durations for uniform coating. The water vapor transmission rate and air permeability did not change significantly after coating. Therefore, the superhydrophobic micro/micro hierarchical fabrics produced using the simple method of this study are more practical and have great potential for mass production than other superhydrophobic textiles prepared using the chemical methods.
Collapse
Affiliation(s)
- Ji Hyun Oh
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea;
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chung Hee Park
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
9
|
Mechanical Response and Analysis of Cracking Process in Hybrid TRM Composites with Flax Textile and Curauá Fibres. Polymers (Basel) 2021; 13:polym13050715. [PMID: 33652849 PMCID: PMC7956663 DOI: 10.3390/polym13050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, the use of plant fibres in Textile-Reinforced Mortar (TRM) composites emerged as a valuable solution to increase their sustainability. Several studies carried out to mechanically characterize the so-called Natural TRMs, although showing promising results, also emphasised some drawbacks due to a severe deformability of the system and to durability issues. This study aims at improving the mechanical behaviour of Natural TRMs including impregnated flax textile (Flax TRMs) by the addition of short curauá fibres within the matrix. Flax TRM specimens were tested in tension to assess the influence of the fibre-reinforced mortar on the composite response. The crack pattern developed during the test was investigated via Digital Image Correlation analysis and by means of an analytical simplified model proposed by the authors. The addition of curauá fibres resulted in a denser crack pattern and in a significant decrease of the mean crack width (around 20%). The overall tensile response of Flax TRMs including curauá fibres resulted closer to the ideal three-linear behaviour of strain-hardening TRM composites with respect to the conventional Flax TRMs by also presenting an increase of dissipated energy of around 45%. This study paves the way for further analysis aimed at enhancing the mechanical performance of Natural TRMs adopting sustainable improvement techniques.
Collapse
|