1
|
Diaz-Baca JA, Fatehi P. Temperature responsive crosslinked starch-kraft lignin macromolecule. Carbohydr Polym 2023; 313:120846. [PMID: 37182932 DOI: 10.1016/j.carbpol.2023.120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Starch is a natural polymer with a relatively simple structure and limited solubility in water. Kraft lignin (KL) is a complex biopolymer obtained as a by-product from the delignification of wood and grasses. The present work reports developing a temperature-responsive high molecular weight macromolecule from crosslinking KL and starch (KLS). The NMR and XPS analyses quantified the changes in the aromatic and anhydroglucose units of KL and starch, observing a higher content of C-O-C bonds, which confirms the presence of glycerol ether cross-linkages between starch and KL in KLS. The rheological analysis of KLS dispersions revealed the formation of a thermo-responsive structured network. The temperature-dependent water solubility and rheological characteristics of KLS were related to the presence of hydrophilic starch chains, crosslinking degree, and physicochemical characteristics of KL. The incorporation of KL and ether crosslinks increased the thermal stability of KLS. Because of its multiple functional groups and large molecular weight (3.6-4.2 × 105 g/mol) that was arranged in an extended globular shape, KLS-5 formed a gel-like structure after a heating-cooling treatment. Overall, the results confirmed that incorporating lignin in starch would fabricate sustainable materials with potentially altered applications, such as temperature-responsive hydrogels and films.
Collapse
|
2
|
Jimenez Bartolome M, Padhi SSP, Fichtberger OG, Schwaiger N, Seidl B, Kozich M, Nyanhongo GS, Guebitz GM. Improving Properties of Starch-Based Adhesives with Carboxylic Acids and Enzymatically Polymerized Lignosulfonates. Int J Mol Sci 2022; 23:ijms232113547. [PMID: 36362333 PMCID: PMC9657476 DOI: 10.3390/ijms232113547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
A novel strategy for improving wet resistance and bonding properties of starch-based adhesives using enzymatically polymerized lignosulfonates and carboxylic acids as additives was developed. Therefore, lignosulfonates were polymerized by laccase to a molecular weight of 750 kDa. Incorporation of low concentrations (up to 1% of the starch weight) of 1,2,3,4-butanetetracarboxylic acid (BTCA) led to further improvement on the properties of the adhesives, while addition of greater amounts of BTCA led to a decrease in the properties measured due to large viscosity increases. Great improvements in wet-resistance from 22 to 60 min and bonding times (from 30 to 20 s) were observed for an adhesive containing 8% enzymatically polymerized lignin and 1% BTCA. On the other hand, the addition of citric acid (CA) deteriorated the properties of the adhesives, especially when lignosulfonate was present. In conclusion, this study shows that the addition of the appropriate amount of enzymatically polymerized lignosulfonates together with carboxylic acids (namely BTCA) to starch-based adhesives is a robust strategy for improving their wet resistance and bonding times.
Collapse
Affiliation(s)
- Miguel Jimenez Bartolome
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
- Correspondence:
| | - Sidhant Satya Prakash Padhi
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Oliver Gabriel Fichtberger
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | | | - Bernhard Seidl
- Agrana Research & Innovation Center GmbH, Josef Reitherstraße 21-23, 3430 Tulln, Austria
| | - Martin Kozich
- Agrana Research & Innovation Center GmbH, Josef Reitherstraße 21-23, 3430 Tulln, Austria
| | - Gibson S. Nyanhongo
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Corner Siemert and Louisa, John Orr Building, Doornfontein, Johannesburg 2028, South Africa
| | - Georg M. Guebitz
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| |
Collapse
|
3
|
Enzymatic synthesis of wet-resistant lignosulfonate-starch adhesives. N Biotechnol 2022; 69:49-54. [PMID: 35339699 DOI: 10.1016/j.nbt.2022.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 03/20/2022] [Indexed: 11/23/2022]
Abstract
This work describes a new method for improving the properties, mainly the wet-resistance, of starch-based adhesives using enzymatically polymerized lignosulfonates. A correlation of viscosity with molecular weight was found, allowing simple control of enzymatic polymerization of lignosulfonates. Incorporation of lignosulfonates polymerized from 29 kDa to > 4500 kDa using laccase led to a considerable increase in wet-resistance (from 15 to 20 min for the laminating glue and from 150 to 1200 min for the bag glue) while not affecting (for the laminating glue) or even improving the bonding time (from 80 to 60 s for the bag glue). Finally, the effect of active laccase in the final adhesive was investigated by enzymatic inactivation using NaN3 before formulation of the glue, as well as by extra laccase addition. In conclusion, this study shows that enzymatically polymerized lignosulfonate is a robust strategy for improving wet resistance of starch-based adhesives.
Collapse
|