1
|
Deng B, Gong C, Wen S, Liu H, Zhang X, Fan X, Wang F, Guo L, Xiong Z, Du F, Ou Y. Quaternized chitosan/polyvinyl alcohol anion exchange membrane enhanced by functionalized attapulgite clay with an ionic "chain-ball" surface structure. Int J Biol Macromol 2024; 271:132595. [PMID: 38821803 DOI: 10.1016/j.ijbiomac.2024.132595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Biomass chitosan has garnered considerable interest for alkaline anion exchange membranes (AEMs) due to its eco-friendly and sustainable characteristics, low reactant permeability and easily modifiable nature, but it still faces the trade-off between high hydroxide conductivity and sufficient mechanical properties. Herein, a novel functionalized attapulgite clay (f-ATP) with a unique ionic "chain-ball" surface structure was prepared and incorporated with quaternized chitosan (QCS)/polyvinyl alcohol (PVA) matrix to fabricate high-performance composite AEMs. Due to the strengthened interfacial bonding between f-ATP nanofillers and the QCS/PVA matrix, composite membranes are synergistically reinforced and toughened, achieving peak tensile strength and elongation at break of 24.62 MPa and 33.8 %. Meanwhile, abundant ion pairs on f-ATP surface facilitate ion transport in the composite AEMs, with the maximum OH- conductivity of 46 mS cm-1 at 80 °C and the highest residual IEC of 83 % after alkaline treatment for 120 h. Moreover, the assembled alkaline direct methanol fuel cell exhibits a remarkable power density of 49.3 mW cm-2 at 80 °C. This work provides a new strategy for fabricating high-performance anion exchange membranes.
Collapse
Affiliation(s)
- Bangjun Deng
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China; College of Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Chunli Gong
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Sheng Wen
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Hai Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Xiaowen Zhang
- College of Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Xiangjian Fan
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Fei Wang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Li Guo
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zemiao Xiong
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feipeng Du
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Ying Ou
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China.
| |
Collapse
|
2
|
Feng Z, Gupta G, Mamlouk M. Degradation of QPPO-based anion polymer electrolyte membrane at neutral pH. RSC Adv 2023; 13:20235-20242. [PMID: 37416914 PMCID: PMC10321057 DOI: 10.1039/d3ra02889e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
The chemical stability of anion polymer electrolyte membranes (AEMs) determines the durability of an AEM water electrolyzer (AEMWE). The alkaline stability of AEMs has been widely investigated in the literature. However, the degradation of AEM at neutral pH closer to the practical AEMWE operating condition is neglected, and the degradation mechanism remains unclear. This paper investigated the stability of quaternized poly(p-phenylene oxide) (QPPO)-based AEMs under different conditions, including Fenton solution, H2O2 solution and DI water. The pristine PPO and chloromethylated PPO (ClPPO) showed good chemical stability in the Fenton solution, and only limited weight loss was observed, 2.8% and 1.6%, respectively. QPPO suffered a high mass loss (29%). Besides, QPPO with higher IEC showed a higher mass loss. QPPO-1 (1.7 mmol g-1) lost nearly twice as much mass as QPPO-2 (1.3 mmol g-1). A strong correlation between the degradation rate of IEC and H2O2 concentration was obtained, which implied that the reaction order is above 1. A long-term oxidative stability test at pH neutral condition was also conducted by immersing the membrane in DI at 60 °C water for 10 months. The membrane breaks into pieces after the degradation test. The possible degradation mechanism is that oxygen or OH˙ radicals attack the methyl group on the rearranged ylide, forming aldehyde or carboxyl attached to the CH2 group.
Collapse
Affiliation(s)
- Zhiming Feng
- School of Engineering, Newcastle University Merz Court Newcastle upon Tyne NE1 7RU UK
| | - Gaurav Gupta
- Chemical Engineering, Lancaster University Lancaster LA1 4YW UK
| | - Mohamed Mamlouk
- School of Engineering, Newcastle University Merz Court Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
3
|
Xie Y, Ringuette A, Liu D, Pang J, Mutlu H, Voll D, Théato P. Sulfonated branched poly(arylene ether ketone sulfone) proton exchange membranes: Effects of degree of branching and ion exchange capacity. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Wang Q, Huang L, Zheng J, Zhang Q, Qin G, Li S, Zhang S. Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Ionic Conductive Polymers for Electrochemical Devices. Polymers (Basel) 2022; 14:polym14020246. [PMID: 35054652 PMCID: PMC8780285 DOI: 10.3390/polym14020246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
|
6
|
|
7
|
Performance of five commercial bipolar membranes under forward and reverse bias conditions for acid-base flow battery applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Ashdot A, Kattan M, Kitayev A, Tal-Gutelmacher E, Amel A, Page M. Design Strategies for Alkaline Exchange Membrane-Electrode Assemblies: Optimization for Fuel Cells and Electrolyzers. MEMBRANES 2021; 11:686. [PMID: 34564503 PMCID: PMC8467945 DOI: 10.3390/membranes11090686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022]
Abstract
Production of hydrocarbon-based, alkaline exchange, membrane-electrode assemblies (MEA's) for fuel cells and electrolyzers is examined via catalyst-coated membrane (CCM) and gas-diffusion electrode (GDE) fabrication routes. The inability effectively to hot-press hydrocarbon-based ion-exchange polymers (ionomers) risks performance limitations due to poor interfacial contact, especially between GDE and membrane. The addition of an ionomeric interlayer is shown greatly to improve the intimacy of contact between GDE and membrane, as determined by ex situ through-plane MEA impedance measurements, indicated by a strong decrease in the frequency of the high-frequency zero phase angle of the complex impedance, and confirmed in situ with device performance tests. The best interfacial contact is achieved with CCM's, with the contact impedance decreasing, and device performance increasing, in the order GDE >> GDE+Interlayer > CCM. The GDE+interlayer fabrication approach is further examined with respect to hydrogen crossover and alkaline membrane electrolyzer cell performance. An interlayer strongly reduces the rate of hydrogen crossover without strongly decreasing electrolyzer performance, while crosslinking the ionomeric layer further reduces the crossover rate though also limiting device performance. The approach can be applied and built upon to improve the design and production of alkaline, and more generally, hydrocarbon-based MEA's and exchange membrane devices.
Collapse
Affiliation(s)
- Aviv Ashdot
- Hydrolite Ltd., 2 Hatochen St., Caesaria 38900, Israel; (A.A.); (M.K.); (A.K.); (E.T.-G.)
- Department of Chemistry, Bar Ilan Institute of Technology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan 52900, Israel
| | - Mordechai Kattan
- Hydrolite Ltd., 2 Hatochen St., Caesaria 38900, Israel; (A.A.); (M.K.); (A.K.); (E.T.-G.)
| | - Anna Kitayev
- Hydrolite Ltd., 2 Hatochen St., Caesaria 38900, Israel; (A.A.); (M.K.); (A.K.); (E.T.-G.)
- Department of Chemistry, Bar Ilan Institute of Technology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan 52900, Israel
| | - Ervin Tal-Gutelmacher
- Hydrolite Ltd., 2 Hatochen St., Caesaria 38900, Israel; (A.A.); (M.K.); (A.K.); (E.T.-G.)
| | - Alina Amel
- Hydrolite Ltd., 2 Hatochen St., Caesaria 38900, Israel; (A.A.); (M.K.); (A.K.); (E.T.-G.)
| | - Miles Page
- Hydrolite Ltd., 2 Hatochen St., Caesaria 38900, Israel; (A.A.); (M.K.); (A.K.); (E.T.-G.)
| |
Collapse
|
9
|
Jheng LC, Cheng CW, Ho KS, Hsu SLC, Hsu CY, Lin BY, Ho TH. Dimethylimidazolium-Functionalized Polybenzimidazole and Its Organic-Inorganic Hybrid Membranes for Anion Exchange Membrane Fuel Cells. Polymers (Basel) 2021; 13:2864. [PMID: 34502904 PMCID: PMC8456347 DOI: 10.3390/polym13172864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/15/2023] Open
Abstract
A quaternized polybenzimidazole (PBI) membrane was synthesized by grafting a dimethylimidazolium end-capped side chain onto PBI. The organic-inorganic hybrid membrane of the quaternized PBI was prepared via a silane-induced crosslinking process with triethoxysilylpropyl dimethylimidazolium chloride. The chemical structure and membrane morphology were characterized using NMR, FTIR, TGA, SEM, EDX, AFM, SAXS, and XPS techniques. Compared with the pristine membrane of dimethylimidazolium-functionalized PBI, its hybrid membrane exhibited a lower swelling ratio, higher mechanical strength, and better oxidative stability. However, the morphology of hydrophilic/hydrophobic phase separation, which facilitates the ion transport along hydrophilic channels, only successfully developed in the pristine membrane. As a result, the hydroxide conductivity of the pristine membrane (5.02 × 10-2 S cm-1 at 80 °C) was measured higher than that of the hybrid membrane (2.22 × 10-2 S cm-1 at 80 °C). The hydroxide conductivity and tensile results suggested that both membranes had good alkaline stability in 2M KOH solution at 80 °C. Furthermore, the maximum power densities of the pristine and hybrid membranes of dimethylimidazolium-functionalized PBI reached 241 mW cm-2 and 152 mW cm-2 at 60 °C, respectively. The fuel cell performance result demonstrates that these two membranes are promising as AEMs for fuel cell applications.
Collapse
Affiliation(s)
- Li-Cheng Jheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Cheng-Wei Cheng
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Steve Lien-Chung Hsu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chung-Yen Hsu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| | - Bi-Yun Lin
- Instrument Center of National Cheng Kung University, Tainan 70101, Taiwan;
| | - Tsung-Han Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; (L.-C.J.); (K.-S.H.); (C.-Y.H.)
| |
Collapse
|
10
|
Li Z, Chen J, Zhou J, Nie Y, Shen C, Gao S. Trimethyl-Ammonium Alkaline Anion Exchange Membranes with the Vinylbenzyl Chloride/Acrylonitrile Main Chain. Macromol Res 2021. [DOI: 10.1007/s13233-021-9054-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Modelling Methods and Validation Techniques for CFD Simulations of PEM Fuel Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9040688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The large-scale adoption of fuel cells system for sustainable power generation will require the combined use of both multidimensional models and of dedicated testing techniques, in order to evolve the current technology beyond its present status. This requires an unprecedented understanding of concurrent and interacting fluid dynamics, material and electrochemical processes. In this review article, Polymer Electrolyte Membrane Fuel Cells (PEMFC) are analysed. In the first part, the most common approaches for multi-phase/multi-physics modelling are presented in their governing equations, inherent limitations and accurate materials characterisation for diffusion layers, membrane and catalyst layers. This provides a thorough overview of key aspects to be included in multidimensional CFD models. In the second part, advanced diagnostic techniques are surveyed, indicating testing practices to accurately characterise the cell operation. These can be used to validate models, complementing the conventional observation of the current–voltage curve with key operating parameters, thus defining a joint modelling/testing environment. The two sections complement each other in portraying a unified framework of interrelated physical/chemical processes, laying the foundation of a robust and complete understanding of PEMFC. This is needed to advance the current technology and to consciously use the ever-growing availability of computational resources in the next future.
Collapse
|
12
|
Li Z, Yu R, Liu C, Zheng J, Guo J, Sherazi TA, Li S, Zhang S. Preparation and characterization of side-chain poly(aryl ether ketone) anion exchange membranes by superacid-catalyzed reaction. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Swaby S, Ureña N, Pérez-Prior MT, Várez A, Levenfeld B. Synthesis and Characterization of Novel Anion Exchange Membranes Based on Semi-Interpenetrating Networks of Functionalized Polysulfone: Effect of Ionic Crosslinking. Polymers (Basel) 2021; 13:polym13060958. [PMID: 33804734 PMCID: PMC8003843 DOI: 10.3390/polym13060958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
In this work, anion exchange membranes based on polymer semi-interpenetrating networks were synthesized and characterized for the first time. The networks are composed of sulfonated polysulfone and 1-methylimidazolium-functionalized polysulfone crosslinked covalently with N,N,N′,N′-tetramethylethylenediamine (degree of crosslinking of 5%). In these membranes, sulfonic groups interact electrostatically with cationic groups to form an ionic crosslinking structure with improved alkaline stability. The effect of the ionic crosslinking on the thermal, chemical, mechanical, and electrochemical behavior of membranes was studied. These crosslinked membranes containing sulfonated polysulfone showed higher thermal stability, with a delay of around 20 °C in the onset decomposition temperature value of the functional groups than the crosslinked membranes containing free polysulfone. The tensile strength values were maintained above 44 MPa in all membranes with a degree of chloromethylation (DC) below 100%. The maximum ionic conductivity value is reached with the membrane with the highest degree of chloromethylation. The chemical stability in alkaline medium of the conducting membranes also improved. Thus, the ionic conductivity variation of the membranes after 96 h in a 1 M potassium hydroxide (KOH) solution is less pronounced when polysulfone is replaced by sulfonated polysulfone. So, the ionic crosslinking which joins both components of the blends together, improves the material’s properties making progress in the development of new solid electrolyte for polymeric fuel cells.
Collapse
|