1
|
Sul H, Lee D, Manthiram A. High-Loading Lithium-Sulfur Batteries with Solvent-Free Dry-Electrode Processing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400728. [PMID: 38433393 DOI: 10.1002/smll.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Lithium-sulfur (Li-S) batteries, with their high energy density, nontoxicity, and the natural abundance of sulfur, hold immense potential as the next-generation energy storage technology. To maximize the actual energy density of the Li-S batteries for practical applications, it is crucial to escalate the areal capacity of the sulfur cathode by fabricating an electrode with high sulfur loading. Herein, ultra-high sulfur loading (up to 12 mg cm-2) cathodes are fabricated through an industrially viable and sustainable solvent-free dry-processing method that utilizes a polytetrafluoroethylene binder fibrillation. Due to its low porosity cathode architecture formed by the binder fibrillation process, the dry-processed electrodes exhibit a relatively lower initial capacity compared to the slurry-processed electrode. However, its mechanical stability is well maintained throughout the cycling without the formation of electrode cracking, demonstrating significantly superior cycling stability. Additionally, through the optimization of the dry-processing, a single-layer pouch cell with a loading of 9 mg cm-2 and a novel multi-layer pouch cell that uses an aluminum mesh as its current collector with a total loading of 14 mg cm-2 are introduced. To address the reduced initial capacity of dry-processed electrodes, strategies such as incorporating electrocatalysts or employing prelithiated active materials are suggested.
Collapse
Affiliation(s)
- Hyunki Sul
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dongsoo Lee
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Arumugam Manthiram
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Zhang R, Sun T. Ink-based additive manufacturing for electrochemical applications. Heliyon 2024; 10:e33023. [PMID: 38994065 PMCID: PMC11238056 DOI: 10.1016/j.heliyon.2024.e33023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has drawn substantial attention in recent decades due to its efficiency and precise control in part fabrication. The limitations of conventional fabrication processes, especially regarding geometry complexity, supply chain, and environmental impact, have prompted the exploration of diverse AM technologies in electrochemistry. Especially, three ink-based AM techniques, binder jet printing (BJP), direct ink writing (DIW), and Inkjet Printing (IJP), have been extensively applied by numerous research teams to produce electrodes, catalyst scaffolds, supercapacitors, batteries, etc. BJP's versatility in utilizing a wide range of materials as powder feedstock promotes its potential for various electrode and battery applications. DIW and IJP stand out for their ability to handle multi-material manufacturing tasks and deliver high printing resolution. To capture recent advancements in this field, we present a comprehensive review of the applications of BJP, DIW, and IJP techniques in fabricating electrochemical devices and components. This review intends to provide an overview of the process-structure-property relationship in electrochemical materials and components across diverse applications manufactured using AM techniques. We delve into how the significantly improved design freedom over the structure offered by these ink-based AM techniques highlights the performance of electrochemical products. Moreover, we highlight their advantages in terms of material compatibility, geometry control, and cost-effectiveness. In specific cases, we also compare the performance of electrochemical components fabricated using AM and conventional manufacturing methods. Finally, we conclude this review article by offering some insights into the future development in this research field.
Collapse
Affiliation(s)
- Runzhi Zhang
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA
| | - Tao Sun
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Chen B, Zhang Z, Wu C, Huang S, Xiao M, Wang S, Guo H, Han D, Meng Y. Aliphatic Polycarbonate-Based Binders for High-Loading Cathodes by Solvent-Free Method Used in High Performance LiFePO 4|Li Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3153. [PMID: 38998236 PMCID: PMC11242272 DOI: 10.3390/ma17133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
The binder ratio in a commercial lithium-ion battery is very low, but it is one of the key materials affecting the battery's performance. In this paper, polycarbonate-based polymers with liner or chain extension structures are proposed as binders. Then, dry LiFePO4 (LFP) electrodes with these binders are prepared using the solvent-free method. Polycarbonate-based polymers have a high tensile strength and a satisfactory bonding strength, and the rich polar carbonate groups provide highly ionic conductivity as binders. The batteries with poly (propylene carbonate)-plus (PPC-P) as binders were shown to have a long cycle life (350 cycles under 1 C, 89% of capacity retention). The preparation of dry electrodes using polycarbonate-based polymers can avoid the use of solvents and shorten the process of preparing electrodes. It can also greatly reduce the manufacturing cost of batteries and effectively use industrial waste gas dioxide oxidation. Most importantly, a battery material with this kind of polycarbonate polymer as a binder is easily recycled by simply heating after the battery is discarded. This paper provides a new idea for the industrialization and development of a novel binder.
Collapse
Affiliation(s)
- Bin Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China; (B.C.); (Z.Z.); (H.G.)
| | - Zhe Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China; (B.C.); (Z.Z.); (H.G.)
| | - Change Wu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (C.W.); (S.H.); (M.X.); (S.W.)
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (C.W.); (S.H.); (M.X.); (S.W.)
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (C.W.); (S.H.); (M.X.); (S.W.)
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (C.W.); (S.H.); (M.X.); (S.W.)
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China; (B.C.); (Z.Z.); (H.G.)
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China; (B.C.); (Z.Z.); (H.G.)
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (C.W.); (S.H.); (M.X.); (S.W.)
| | - Yuezhong Meng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China; (B.C.); (Z.Z.); (H.G.)
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (C.W.); (S.H.); (M.X.); (S.W.)
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Zhang K, Li D, Wang X, Gao J, Shen H, Zhang H, Rong C, Chen Z. Dry Electrode Processing Technology and Binders. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2349. [PMID: 38793416 PMCID: PMC11123077 DOI: 10.3390/ma17102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
As a popular energy storage equipment, lithium-ion batteries (LIBs) have many advantages, such as high energy density and long cycle life. At this stage, with the increasing demand for energy storage materials, the industrialization of batteries is facing new challenges such as enhancing efficiency, reducing energy consumption, and improving battery performance. In particular, the challenges mentioned above are particularly critical in advanced next-generation battery manufacturing. For batteries, the electrode processing process plays a crucial role in advancing lithium-ion battery technology and has a significant impact on battery energy density, manufacturing cost, and yield. Dry electrode technology is an emerging technology that has attracted extensive attention from both academia and the manufacturing industry due to its unique advantages and compatibility. This paper provides a detailed introduction to the development status and application examples of various dry electrode technologies. It discusses the latest advancements in commonly used binders for different dry processes and offers insights into future electrode manufacturing.
Collapse
Affiliation(s)
- Kaiqi Zhang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| | - Dan Li
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China; (D.L.); (J.G.)
| | - Xuehan Wang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| | - Jingwan Gao
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China; (D.L.); (J.G.)
| | - Huilin Shen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| | - Hao Zhang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| | - Changru Rong
- National Key Laboratory of Advanced Vehicle Integration and Control, China FAW Group Co., Ltd., Changchun 130013, China; (D.L.); (J.G.)
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (K.Z.); (X.W.); (H.S.); (H.Z.)
| |
Collapse
|
5
|
Flament A, Desse M, Bernard P, Carrot C. Viscosity of Suspensions of Strongly Bonded Spherical Particles of Nickel-Manganese-Cobalt Mixed Oxides (NMC) in Molten Poly(Ethylene Carbonate) for Batteries. Macromol Rapid Commun 2024:e2400046. [PMID: 38482545 DOI: 10.1002/marc.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Ionically conductive polymers highly filled with active materials, such as metal oxides are increasingly studied for their potential use in all solid-state batteries. They offer the desirable processing ease of polymers for mass production despite interfacial issues that remain to be solved. In this study, it is shown that spherical particles of transition metal oxides can be introduced in co-polymers of alkene carbonate and ethylene oxide at loading close to the maximum packing fraction, without imparting the processability in the melt of the material. In particular, the viscosity does not show any yield stress and the increase of viscosity shows that the intrinsic viscosity of the filler does not match with the usual 2.5 value in the limit of the Einstein's equation. Conversely, rheological data show that the value is rather close to unity consistently with theoretical arguments that predicted that this scaling factor should be unity when particle rotation is precluded. In the present case, this behavior is attributed to strong bonding between polymer and filler that is proved by electronic microscopy and by dynamical mechanical spectroscopy showing a relaxation due to bound polymer.
Collapse
Affiliation(s)
- Augustin Flament
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, Saint-Étienne, Cédex, F-42023, France
- Groupe Renault, 1 Av. du Golf, Guyancourt, 78280, France
| | - Melinda Desse
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, Saint-Étienne, Cédex, F-42023, France
| | - Pierre Bernard
- Groupe Renault, 1 Av. du Golf, Guyancourt, 78280, France
| | - Christian Carrot
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, Saint-Étienne, Cédex, F-42023, France
| |
Collapse
|
6
|
Lee H, Shin DY, Na Y, Han G, Kim J, Kim N, Bang SJ, Kang HS, Oh S, Yoon CB, Park J, Kim HE, Jung HD, Kang MH. Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants. BIOMATERIALS ADVANCES 2023; 152:213523. [PMID: 37336010 DOI: 10.1016/j.bioadv.2023.213523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Biodegradability, bone-healing rate, and prevention of bacterial infection are critical factors for orthopedic implants. Polylactic acid (PLA) is a good candidate biodegradable material; however, it has insufficient mechanical strength and bioactivity for orthopedic implants. Magnesium (Mg), has good bioactivity, biodegradability, and sufficient mechanical properties, similar to that of bone. Moreover, Mg has an inherent antibacterial property via a photothermal effect, which generates localized heat, thus preventing bacterial infection. Therefore, Mg is a good candidate material for PLA composites, to improve their mechanical and biological performance and add an antibacterial property. Herein, we fabricated an antibacterial PLA/Mg composite for enhanced mechanical and biological performance with an antibacterial property for application as biodegradable orthopedic implants. The composite was fabricated with 15 and 30 vol% of Mg homogeneously dispersed in PLA without the generation of a defect using a high-shear mixer. The composites exhibited an enhanced compressive strength of 107.3 and 93.2 MPa, and stiffness of 2.3 and 2.5 GPa, respectively, compared with those of pure PLA which were 68.8 MPa and 1.6 GPa, respectively. Moreover, the PLA/Mg composite at 15 vol% Mg exhibited significant improvement of biological performance in terms of enhanced initial cell attachment and cell proliferation, whereas the composite at 30 vol% Mg showed deteriorated cell proliferation and differentiation because of the rapid degradation of the Mg particles. In turn, the PLA/Mg composites exerted an antibacterial effect based on the inherent antibacterial property of Mg as well as the photothermal effect induced by near-infrared (NIR) treatment, which can minimize infection after implantation surgery. Therefore, antibacterial PLA/Mg composites with enhanced mechanical and biological performance may be a candidate material with great potential for biodegradable orthopedic implants.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Da-Young Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuhyun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ginam Han
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nahyun Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seo-Jun Bang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hyeong Seok Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - SeKwon Oh
- Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Chang-Bun Yoon
- Department of Advanced Materials Engineering, Tech University of Korea, Siheung-si 15073, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea; Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si 16229, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
7
|
Sentis MP, Aracil B, Lemahieu G, Bouzaid M, Brambilla G, Meunier G. Numerical prediction of long-term stability of liquid formulations determined by visual observation and static multiple light scattering. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Li Z, Aboalsaud AM, Liu X, Thankamony RL, Chen IC, Li Y, Lai Z. Scalable fabrication of Solvent-Free composite solid electrolyte by a continuous Thermal-Extrusion process. J Colloid Interface Sci 2022; 628:64-71. [PMID: 35908432 DOI: 10.1016/j.jcis.2022.07.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Composite solid-state electrolytes (CSEs) are regarded as a promising alternative for the next-generation lithium-ion batteries because they integrate the advantages of inorganic electrolytes and organic electrolytes. However, there are two issues faced by current CSEs: 1) a green and feasible approach to prepare CSEs in large scales is desired; and 2) the trace solvents, remaining from the preparation processes, lead to some serious concerns, such as safety hazard issues, electrolyte-electrode interfacial issues, and reduced durability of batteries. Here, a continuous thermal-extrusion process is presented to realize the large-scale fabrication of solvent-free CSE. A 38.7-meter CSE membrane was prepared as a demonstration in this study. Thanks to the elimination of residual solvents, the electrolyte membrane exhibited a high tensile strength of 3.85 MPa, satisfactory lithium transference number (0.495), and excellent electrochemical stability (5.15 V). Excellent long-term stability was demonstrated by operating the symmetric lithium cell at a stable current density of 0.1 mA cm-2 for over 3700 h. Solvent-free CSE lithium metal batteries showed a discharge capacity of 155.7 - 25.17 mAh g-1 at 0.1 - 2.0C, and the discharge capacity remained 78.1% after testing for 380cycles.
Collapse
Affiliation(s)
- Zhen Li
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ammar M Aboalsaud
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Roshni L Thankamony
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - I-Chun Chen
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yangxing Li
- Watt Research Lab, Central Research Institute, Huawei Technologies Co. Ltd., Bantian, Longgang District, Shenzhen 518129, China
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Centre, Chemical Engineering Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Zhou Z, Tao Z, Zhang L, Zheng X, Xiao X, Liu Z, Li X, Liu G, Zhao P, Zhang P. Scalable Manufacturing of Solid Polymer Electrolytes with Superior Room-Temperature Ionic Conductivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32994-33003. [PMID: 35819178 DOI: 10.1021/acsami.2c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A scalable manufacturing protocol is developed to prepare polymer-based solvent-free all-solid flexible energy storage devices based on a two-roll mill and adapted rubber mixing technology. The as-prepared solid polymer electrolytes (SPEs) consisting of commercial poly(methyl methacrylate)-grafted natural rubber (MG30) and lithium bis(trifluoromethanesulfonyl)imide achieve a superior ionic conductivity of 2.7 × 10-3 S cm-1 at 30 °C. The superior ionic conductivity is attributed to the formation of an ionic cluster network in the composite as proved by small-angle X-ray scattering and infrared spectroscopy measurements. Moreover, the as-prepared SPEs show good mechanical stability over a broad temperature range, that is , a storage modulus above 1 × 104 Pa from 30 to 120 °C as indicated by the rheology data. Furthermore, the SPEs were assembled with the carbon black-filled MG30 (i.e., MG30C) electrode into a flexible supercapacitor cell, which had a wide voltage window of 3.5 V, good energy density of 28.4 μW h·cm-2 at 160 °C, and good temperature tolerance up to 160 °C. This scaling-up manufacture strategy shows tremendous potential to the advancing of SPEs in applications of flexible energy storage device.
Collapse
Affiliation(s)
- Zekun Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengren Tao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Linyun Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Materials Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xueying Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xieyi Xiao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhen Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guangfeng Liu
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Pengfei Zhao
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, P.R. China
| | - Peng Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Revisiting Polytetrafluorethylene Binder for Solvent-Free Lithium-Ion Battery Anode Fabrication. BATTERIES-BASEL 2022. [DOI: 10.3390/batteries8060057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Solvent-free (SF) anodes with different carbon materials (graphite, hard carbon, and soft carbon) were fabricated to investigate the stability of different anodes with polytetrafluorethylene (PTFE) degradation. The graphite anode with large volume variation during the charge/discharge process showed poor cycle life performance, while hard carbon and soft carbon with low-volume expansion showed good cycle life. The SF hard carbon electrodes with a high loading of 10.7 mg/cm2 revealed good long-term cycling performance similar to conventional slurry-casting (CSC) electrodes. It demonstrated nearly 90% capacity retention after 120 cycles under a current of 1/3 C with LiNi0.5Co0.2Mn0.3O2 (NCM523) as cathode in coin cell. The rate capability of the high-loading SF electrodes also is comparable to the CSC electrodes. The high stability of SF hard carbon and soft carbon anodes was attributed to its low-volume variation, which could maintain their integrity even though PTFE was defluorinated to amorphous carbon irreversibly. However, the reduced amorphous carbon cannot tolerate huge volume variation of graphite during cycling, resulting in poor stability.
Collapse
|
11
|
Barbosa J, Gonçalves R, Costa CM, Lanceros-Méndez S. Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries. ACS OMEGA 2022; 7:14457-14464. [PMID: 35572743 PMCID: PMC9089680 DOI: 10.1021/acsomega.2c01926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
Lithium-ion batteries (LIBs) are the most widely used energy storage system because of their high energy density and power, robustness, and reversibility, but they typically include an electrolyte solution composed of flammable organic solvents, leading to safety risks and reliability concerns for high-energy-density batteries. A step forward in Li-ion technology is the development of solid-state batteries suitable in terms of energy density and safety for the next generation of smart, safe, and high-performance batteries. Solid-state batteries can be developed on the basis of a solid polymer electrolyte (SPE) that may rely on natural polymers in order to replace synthetic ones, thereby taking into account environmental concerns. This work provides a perspective on current state-of-the-art sustainable SPEs for lithium-ion batteries. The recent developments are presented with a focus on natural polymers and their relevant properties in the context of battery applications. In addition, the ionic conductivity values and battery performance of natural polymer-based SPEs are reported, and it is shown that sustainable SPEs can become essential components of a next generation of high-performance solid-state batteries synergistically focused on performance, sustainability, and circular economy considerations.
Collapse
Affiliation(s)
- João
C. Barbosa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-053 Braga, Portugal
| | - Renato Gonçalves
- Center
of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-053 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
12
|
Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles. ENERGIES 2022. [DOI: 10.3390/en15062203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Worldwide, there has been an exponential growth in the production and application of lithium-ion batteries (LIBs), driven by the energy transition and the electric vehicle market. The scarcity of raw materials and the circular economy strategy of LIBs encourage the need to reuse components, recycle, and give second life to used batteries. However, one of the obstacles is the insufficient volume of LIBs for recycling, which prevents the economic viability of this industrial process. Thus, this article mainly focuses on the economic aspects of the recycling of LIBs, presenting and analyzing: (i) the advantages and disadvantages of recycling and (ii) a survey of factors that influence the cost and economic feasibility of disposing of batteries. The importance of regulations, the market, and business models regarding the recycling of LIBs in a few countries are also discussed. Finally, a business model is created for recycling LIBs in Brazil. The main factors that influence the economic feasibility of this process are indicated, such as government incentives through regulation, exemption from fees and taxes, and the adequacy of battery technology. Encouraging recycling through tax exemptions or reductions can make the process more economically viable, in addition to contributing to the circular economy. Another essential factor to be considered is the creation of joint ventures, which can facilitate the entire chain of the circular economy, including logistics, transport, and disposal of batteries.
Collapse
|
13
|
Ben‐Barak I, Ragones H, Golodnitsky D. 3D printable solid and quasi‐solid electrolytes for advanced batteries. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ido Ben‐Barak
- School of Chemistry Tel Aviv University Tel Aviv Israel
| | - Heftsi Ragones
- School of Chemistry Tel Aviv University Tel Aviv Israel
- Faculty of Engineering Holon Institute of Technology Holon Israel
| | | |
Collapse
|
14
|
Li J, Fleetwood J, Hawley WB, Kays W. From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Chem Rev 2021; 122:903-956. [PMID: 34705441 DOI: 10.1021/acs.chemrev.1c00565] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrode processing plays an important role in advancing lithium-ion battery technologies and has a significant impact on cell energy density, manufacturing cost, and throughput. Compared to the extensive research on materials development, however, there has been much less effort in this area. In this Review, we outline each step in the electrode processing of lithium-ion batteries from materials to cell assembly, summarize the recent progress in individual steps, deconvolute the interplays between those steps, discuss the underlying constraints, and share some prospective technologies. This Review aims to provide an overview of the whole process in lithium-ion battery fabrication from powder to cell formation and bridge the gap between academic development and industrial manufacturing.
Collapse
Affiliation(s)
- Jianlin Li
- Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James Fleetwood
- Battery Innovation Center, 7970 S. Energy Drive, Newberry, Indiana 47449, United States
| | - W Blake Hawley
- Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - William Kays
- RW Baron Process Equipment, Inc., 381B Allen Street, Amherst, Wisconsin 54406, United States
| |
Collapse
|
15
|
Addressing Manufacturability and Processability in Polymer Gel Electrolytes for Li/Na Batteries. Polymers (Basel) 2021; 13:polym13132093. [PMID: 34202900 PMCID: PMC8271759 DOI: 10.3390/polym13132093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gel electrolytes are prepared with Ultra High Molecular Weight (UHMW) polyethylene oxide (PEO) in a concentration ranging from 5 to 30 wt.% and Li- and Na-doped 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14-TFSI) by a simple procedure consisting of dissolving PEO by melting it directly in the liquid electrolyte while stirring the blend. This procedure is fast, reproducible and needs no auxiliary solvents, which makes it sustainable and potentially easy to scale up for mass production. The viability of the up-scaling by extrusion has been studied. Extrusion has been chosen because it is a processing method commonly employed in the plastics industry. The structure and morphology of the gel electrolytes prepared by both methods have been studied by DSC and FTIR, showing small differences among the two methods. Composite gels incorporation high concentrations of surface modified sepiolite fibers have been successfully prepared by extrusion. The rheological behavior and ionic conductivity of the gels have been characterized, and very similar performance of the extruded and manually mixed gels is detected. Ionic conductivity of all the gels, including the composites, are at or over 0.4 mS cm-1 at 25 °C, being at the same time thermoreversible and self-healing gels, tough, sticky, transparent and stretchable. This combination of properties, together with the viability of their industrial up-scaling, makes these gel electrolyte families very attractive for their application in energy storage devices.
Collapse
|
16
|
Miguel Á, Jankowski P, Pablos JL, Corrales T, López-Cudero A, Bhowmik A, Carrasco-Busturia D, Ellis G, García N, García-Lastra J, Tiemblo P. Polymers for aluminium secondary batteries: Solubility, ionogel formation and chloroaluminate speciation. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|