1
|
Wu SD, Chuang WT, Ho JC, Wu HC, Hsu SH. Self-Healing of Recombinant Spider Silk Gel and Coating. Polymers (Basel) 2023; 15:polym15081855. [PMID: 37112001 PMCID: PMC10141599 DOI: 10.3390/polym15081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression host. The self-assembled recombinant spider silk hydrogel was obtained through the dialysis process (purity > 85%). The recombinant spider silk hydrogel with a storage modulus of ~250 Pa demonstrated autonomous self-healing and high strain-sensitive properties (critical strain ~50%) at 25 °C. The in situ small-angle X-ray scattering (in situ SAXS) analyses revealed that the self-healing mechanism was associated with the stick-slip behavior of the β-sheet nanocrystals (each of ~2-4 nm) based on the slope variation (i.e., ~-0.4 at 100%/200% strains, and ~-0.9 at 1% strain) of SAXS curves in the high q-range. The self-healing phenomenon may occur through the rupture and reformation of the reversible hydrogen bonding within the β-sheet nanocrystals. Furthermore, the recombinant spider silk as a dry coating material demonstrated self-healing under humidity as well as cell affinity. The electrical conductivity of the dry silk coating was ~0.4 mS/m. Neural stem cells (NSCs) proliferated on the coated surface and showed a 2.3-fold number expansion after 3 days of culture. The biomimetic self-healing recombinant spider silk gel and thinly coated surface may have good potential in biomedical applications.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Jo-Chen Ho
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| |
Collapse
|
2
|
Shih YF, Lin SH, Xu J, Su CJ, Huang CF, Hsu SH. Stretchable and biodegradable chitosan-polyurethane-cellulose nanofiber composites as anisotropic materials. Int J Biol Macromol 2023; 230:123116. [PMID: 36603720 DOI: 10.1016/j.ijbiomac.2022.123116] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Chitosan is a naturally derived biodegradable polymer with abundancy, sustainability, and ease of chemical modification. Polyurethanes are a family of elastic biocompatible polymers, and composites of polyurethanes have versatile properties and applications. Chitosan-polyurethane composites were recently developed but had insufficient strength and limited stretchability. In the current study, cellulose nanofibers (CNFs) were integrated in chitosan-polyurethane composites to prepare stretchable and anisotropic materials. A biodegradable polyurethane was first synthesized, end-capped with aldehyde to become dialdehyde polyurethane (DP) nanoparticles, and added with CNFs to prepare the DP-CNF composite crosslinker (DPF). The waterborne DPF crosslinker was then blended with chitosan solution to make polyurethane-CNF-chitosan (DPFC) composites. After blending, DPFC may form hydrogel in ~33 min at room temperature, which confirmed crosslinking. Composite films cast and dried from the blends showed good elongation (~420.2 %) at 60 °C. Anisotropic films were then generated by tension annealing with pre-strain. The annealed films with 200 % pre-strain exhibited large elastic anisotropy with ~4.9 anisotropic ratio. In situ SAXS/WAXS analyses unveiled that rearrangement and alignment of the microstructure during tension annealing accounted for the anisotropy. The anisotropic composite films had the ability to orient the growth of neural stem cells and showed the potential for biomimetic and tissue engineering applications.
Collapse
Affiliation(s)
- Yu-Feng Shih
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shih-Ho Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, Taiwan, Republic of China
| | - Chih-Feng Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, Republic of China.
| |
Collapse
|
3
|
Xu J, Hsu SH. Enhancement of Cell Behavior by the Polysaccharide Extract of Arthrospira and Potential Biomedical Applications. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020732. [PMID: 36677794 PMCID: PMC9863469 DOI: 10.3390/molecules28020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Arthrospira is one of the most studied cyanobacteria and has been reported with practical applications. Among the substances derived from Arthrospira, polysaccharides have received relatively less attention than phycocyanins, though they have more abundant structural variations and specific properties. Herein, a new Arthrospira-derived sulfated polysaccharide was explored for its potential bioactive functions. The ability of this sulfated polysaccharide to promote the behavior of neural stem cells (NSCs) in three-dimensional hydrogel was examined for the first time. NSCs encapsulated in the sulfated polysaccharide-containing hydrogel showed better proliferation than the control hydrogel as well as a unique cell clustering behavior, i.e., formation of multicellular spherical clusters (40-60 μm). The sulfated polysaccharide, in an appropriate range of concentration (5 mg/mL), also maintained the stemness of NSCs in hydrogel and facilitated their differentiation. In addition, the potentials of the new sulfated polysaccharide as a coating material and as a component for drug carrier were verified. The sulfated polysaccharide-modified substrate exhibited superhydrophilicity (contact angle ~9°) and promoted cell adhesion to the substrate. Composite nanoparticles composed of the sulfated polysaccharide and other differently charged polysaccharides were produced with an average diameter of ~240 nm and estimated drug loading of ~18%. The new Arthrospira-derived sulfated polysaccharide is a promising candidate for cell culture, surface-modification, and drug-delivery applications in the biomedical field.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35, Keyan Road, Miaoli 35053, Taiwan
- Correspondence: ; Tel.: +886-2-3366-5313
| |
Collapse
|
4
|
Alkabli J. Progress in preparation of thiolated, crosslinked, and imino-chitosan derivatives targeting specific applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Aizamddin MF, Mahat MM, Ariffin ZZ, Samsudin I, Razali MSM, Amir M‘A. Synthesis, Characterisation and Antibacterial Properties of Silicone-Silver Thin Film for the Potential of Medical Device Applications. Polymers (Basel) 2021; 13:polym13213822. [PMID: 34771378 PMCID: PMC8588057 DOI: 10.3390/polym13213822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
Silver (Ag) particles have sparked considerable interest in industry and academia, particularly for health and medical applications. Here, we present the “green” and simple synthesis of an Ag particle-based silicone (Si) thin film for medical device applications. Drop-casting and peel-off techniques were used to create an Si thin film containing 10–50% (v/v) of Ag particles. Electro impedance spectroscopy (EIS), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and tensile tests were used to demonstrate the electrical conductivity, crystallinity, morphology-elemental, and mechanical properties, respectively. The oriented crystalline structure and excellent electronic migration explained the highest conductivity value (1.40 × 10−5 S cm−1) of the 50% Ag–Si thin film. The findings regarding the evolution of the conductive network were supported by the diameter and distribution of Ag particles in the Si film. However, the larger size of the Ag particles in the Si film resulted in a lower tensile stress of 68.23% and an elongation rate of 68.25% compared to the pristine Si film. The antibacterial activity of the Ag–Si film against methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (B. cereus), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) was investigated. These findings support Si–Ag thin films’ ability to avoid infection in any medical device application.
Collapse
Affiliation(s)
- Muhammad Faiz Aizamddin
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Mohd Muzamir Mahat
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
- Correspondence: (M.M.M.); (M.A.A.)
| | - Zaidah Zainal Ariffin
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Irwan Samsudin
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Malaysia; (I.S.); (M.S.M.R.)
| | - Muhammad Syafiek Mohd Razali
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Malaysia; (I.S.); (M.S.M.R.)
| | - Muhammad ‘Abid Amir
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Malaysia; (I.S.); (M.S.M.R.)
- Correspondence: (M.M.M.); (M.A.A.)
| |
Collapse
|
6
|
Murugesan S, Scheibel T. Chitosan‐based
nanocomposites for medical applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210251] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Department of Metallurgical and Materials Engineering National Institute of Technology Karnataka Mangalore India
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI) University Bayreuth Bayreuth Germany
| |
Collapse
|
7
|
Cifarelli A, Boggioni L, Vignali A, Tritto I, Bertini F, Losio S. Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-Based Diisocyanate. Polymers (Basel) 2021; 13:polym13040612. [PMID: 33670627 PMCID: PMC7922077 DOI: 10.3390/polym13040612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Bio-polyols from epoxidized soybean and linseed oils and caprylic acid or 3-phenyl butyric acid were prepared using an environmentally friendly, solvent-free method evaluating the presence of triethylamine as catalyst. Side reactions, leading to a cross-linking structure with high density, were reduced, introducing the catalyst and properly tuning the reaction conditions. A medium functionality value of around 3 along with a hydroxyl number up to around 90 mg KOH/g, narrow polydispersity index, and relatively low molecular mass up to 2400 g/mol were the experimental targets. From selected bio-polyols and an aliphatic partially bio-based isocyanate, a series of water blown polyurethane (PU) foams was produced, estimating the effect of the chemical nature of substituents in the polyol backbone on the PU properties. The apparent density of the foams was in the range of 79–113 kg/m3, with higher values for foams from the aromatic acid. Flexible polyurethane foams with open cell structure from bio-based polyols were obtained, with higher cavity size and lower pore sizes for foams from caprylic acid. The bio-based flexible PU foams showed comparable Young’s moduli (14–18 kPa) and compression deflection values (4.6–5.5 kPa) and exhibited an almost complete recovery of their initial size.
Collapse
|