1
|
Hussain S, Jameel F, Arif A, Khan I, Mohiuddin OA, Salim A, Rehman MU. Enhanced Wound Healing Effects of Nanoscale Lipid-Diclofenac Conjugates. J Drug Deliv Sci Technol 2024:106223. [DOI: 10.1016/j.jddst.2024.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
|
2
|
Khan MQ, Alvi MA, Nawaz HH, Umar M. Cancer Treatment Using Nanofibers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1305. [PMID: 39120410 PMCID: PMC11314412 DOI: 10.3390/nano14151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Currently, the number of patients with cancer is expanding consistently because of a low quality of life. For this reason, the therapies used to treat cancer have received a lot of consideration from specialists. Numerous anticancer medications have been utilized to treat patients with cancer. However, the immediate utilization of anticancer medicines leads to unpleasant side effects for patients and there are many restrictions to applying these treatments. A number of polymers like cellulose, chitosan, Polyvinyl Alcohol (PVA), Polyacrylonitrile (PAN), peptides and Poly (hydroxy alkanoate) have good properties for the treatment of cancer, but the nanofibers-based target and controlled drug delivery system produced by the co-axial electrospinning technique have extraordinary properties like favorable mechanical characteristics, an excellent release profile, a high surface area, and a high sponginess and are harmless, bio-renewable, biofriendly, highly degradable, and can be produced very conveniently on an industrial scale. Thus, nanofibers produced through coaxial electrospinning can be designed to target specific cancer cells or tissues. By modifying the composition and properties of the nanofibers, researchers can control the release kinetics of the therapeutic agent and enhance its accumulation at the tumor site while minimizing systemic toxicity. The core-shell structure of coaxial electrospun nanofibers allows for a controlled and sustained release of therapeutic agents over time. This controlled release profile can improve the efficacy of cancer treatment by maintaining therapeutic drug concentrations within the tumor microenvironment for an extended period.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Abbas Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Hafiza Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
3
|
Khan MQ, Khan J, Alvi MAH, Nawaz H, Fahad M, Umar M. Nanomaterial-based sensors for microbe detection: a review. DISCOVER NANO 2024; 19:120. [PMID: 39080121 PMCID: PMC11289191 DOI: 10.1186/s11671-024-04065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Airborne microorganisms pose a significant health threat, causing various illnesses. Traditional detection methods are often slow and complex. This review highlights the potential of nanomaterial-based biosensors, particularly colorimetric sensors, for rapid and on-site detection of airborne microbes. Colorimetric sensors offer real-time visual detection without complex instrumentation. We explore the integration of these sensors with Lab-on-a-Chip technology using PDMS microfluidics. This review also proposes a novel PDMS-based colorimetric biosensor for real-time detection of airborne microbes. The sensor utilizes a color change phenomenon easily observable with the naked eye, simplifying analysis and potentially enabling point-of-care applications.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan.
| | - Jahangir Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Abbas Haider Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Muhammad Fahad
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
4
|
Rosa RP, Rosace G, Trovato V. Recent Advancements in Acrylic Fabric Applications: A Comprehensive Review and Future Trends. Polymers (Basel) 2024; 16:2111. [PMID: 39125138 PMCID: PMC11314402 DOI: 10.3390/polym16152111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Acrylic fibres, as synthetic polymers, have been used extensively in the textile industry to create a wide variety of products, ranging from apparel and home furnishings to car rooftops and carbon fibres. Their widespread application is attributed to a combination of desirable properties, including a soft, wool-like texture, chemical stability, and robust mechanical characteristics. Furthermore, the chemical structure of acrylic fibres can be modified to imbue them with additional features, such as antimicrobial properties, fire resistance, conductivity, water repellency, and ultraviolet protection. This review explores the technological methods employed to functionalise acrylic fibres and discusses future trends in their development.
Collapse
Affiliation(s)
- Raphael Palucci Rosa
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, BG, Italy;
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, and Local INSTM Unit, Viale Marconi 5, 24044 Dalmine, BG, Italy;
| | - Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, BG, Italy;
| |
Collapse
|
5
|
Cruz-Maya I, Cirillo V, Serrano-Bello J, Serri C, Alvarez-Perez MA, Guarino V. Optimization of Diclofenac-Loaded Bicomponent Nanofibers: Effect of Gelatin on In Vitro and In Vivo Response. Pharmaceutics 2024; 16:925. [PMID: 39065622 PMCID: PMC11279899 DOI: 10.3390/pharmaceutics16070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The use of electrospun fibers as anti-inflammatory drug carriers is currently one of the most interesting approaches for the design of drug delivery systems. In recent years, biodegradable polymers blended with naturally derived ones have been extensively studied to fabricate bioinspired platforms capable of driving biological responses by releasing selected molecular/pharmaceutical signals. Here, sodium diclofenac (DicNa)-loaded electrospun fibers, consisting of polycaprolactone (PCL) or gelatin-functionalized PCL, were studied to evaluate fibroblasts' in vitro and in vivo response. In vitro studies demonstrated that cell adhesion of L929 cells (≈70%) was not affected by the presence of DicNa after 4 h. Moreover, the initial burst release of the drug from PD and PGD fibers, e.g., 80 and 48%, respectively, after 5 h-combined with its sustained release-did not produce any cytotoxic effect and did not negatively influence the biological activity of the cells. In particular, it was demonstrated that the addition of gelatin concurred to slow down the release mechanism, thus limiting the antiproliferative effect of DicNa, as confirmed by the significant increase in cell viability and collagen deposition after 7 days, with respect to PCL alone. In vivo studies in a rat subcutaneous model also confirmed the ability of DicNa-loaded fibers to moderate the inflammatory/foreign body response independently through the presence of gelatin that played a significant role in supporting the formation of small-caliber vessels after 10 days of implantation. All of these results suggest using bicomponent fibers loaded with DicNa as a valid therapeutic tool capable of supporting the wound healing process and limiting in vivo inflammation and rejection phenomena.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Valentina Cirillo
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
| | - Janeth Serrano-Bello
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy;
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
| |
Collapse
|
6
|
Chen YR, Thanh DTH, Tran QTP, Liu BL, Srinophakun P, Chiu CY, Chen KH, Chang YK. The Utilization of Chicken Egg White Waste-Modified Nanofiber Membrane for Anionic Dye Removal in Batch and Flow Systems: Comprehensive Investigations into Equilibrium, Kinetics, and Breakthrough Curve. MEMBRANES 2024; 14:128. [PMID: 38921495 PMCID: PMC11205732 DOI: 10.3390/membranes14060128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
This study investigated the use of chicken egg white (CEW) waste immobilized on weak acidic nanofiber membranes for removing the anionic acid orange 7 (AO7) dye in batch and continuous flow modes. Different experiments were conducted to evaluate the effectiveness of CEW-modified nanofiber membranes for AO7 removal, focusing on CEW immobilization conditions, adsorption kinetics, and thermodynamics. The CEW-modified nanofiber membrane (namely NM-COOH-CEW) exhibited a maximum AO7 adsorption capacity of 589.11 mg/g within approximately 30 min. The Freundlich isotherm model best represented the equilibrium adsorption data, while the adsorption kinetics followed a pseudo-second-order rate model. Breakthrough curve analysis using the Thomas model and the bed depth service time (BDST) model showed that the BDST model accurately described the curve, with an error percentage under 5%. To investigate AO7 elution efficiency, different concentrations of organic solvents or salts were tested as eluents. The NM-COOH-CEW nanofiber membrane exhibited promising performance as an effective adsorbent for removing AO7 dye from contaminated water.
Collapse
Affiliation(s)
- Yun-Rou Chen
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Dinh Thi Hong Thanh
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Quynh Thi Phuong Tran
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 70880, Vietnam;
| | - Bing-Lan Liu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan;
| | - Penjit Srinophakun
- Department of Chemical Engineering, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand;
| | - Chen-Yaw Chiu
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Kuei-Hsiang Chen
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; (Y.-R.C.); (D.T.H.T.); (C.-Y.C.)
| | - Yu-Kaung Chang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli Dist., Taoyuan City 320315, Taiwan
| |
Collapse
|
7
|
Alvi MH, Maqsood H, Iftikhar F, Akhtar S, Khan MQ, Nawab Y, Kim IS. Fabrication of Multifunctional Tents Using Canvas Fabric. ACS OMEGA 2024; 9:17706-17725. [PMID: 38680368 PMCID: PMC11044260 DOI: 10.1021/acsomega.3c09249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
Herein, this study was compiled to investigate a suitable solution for the fabrication and development of the multifunctional defense tent from previously reported research. The military always needs to protect their soldiers and equipment from detection. The advancement of infrared detection technology emphasizes the significance of infrared camouflage materials, reducing thermal emissions for various applications. Objects emit infrared radiation detectable by devices, making military targets easily identifiable. Infrared camouflage mitigates detection by lowering an object's infrared radiation, achieved by methods such as reducing surface temperature, which is crucial in designing military tents with infrared (IR) camouflage, considering water repellency and antibacterial features. Water repellency, as well as antimicrobial properties, in army tents is also important as they have to survive in different situations. All these problems should be addressed with the required properties; therefore, the authors try to introduce a new method from which multifunctional tents can be produced through economical, multifunctional, and sustainable materials that have IR protection, water repellency, ultraviolet (UV) protection, air filtration and permeability, and antimicrobial properties. There is still no tent that performs multiple functions at a time, even those functions that do not correlate with each other such as water repellency, IR protection, antimicrobial, and air permeability. So, a multifunctional tent could be the solution to all these problems having all the properties discussed above. In this study based on the literature review, authors concluded a method for the required tent for canvas fabric coated with zinc sulfide (ZnS), graphene oxide (GO), and zinc oxide (ZnO), or these materials should be incorporated in fiber formation because fiber composition has more impact. These multifunctional tents will be very beneficial due to their multifunctions like weather resistance, durability, and long life. These would help the army in their missions by concealing their soldiers and equipment from detection by cameras and providing filtered air inside the tent in case of gases or explosions. The proposed method will help to fulfill the stated and implied needs of customers.
Collapse
Affiliation(s)
- Muhammad
Abbas Haider Alvi
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Hira Maqsood
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Fatima Iftikhar
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Saeed Akhtar
- Department of Clothing, School of Engineering
& Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Qamar Khan
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Yasir Nawab
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Ick Soo Kim
- Division of Frontier Fiber, Institute
of Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research
(ICCER), Faculty of Textile Sciences, Shinshu
University, Nagano 386-8567, Japan
| |
Collapse
|
8
|
Alotaibi B, Khan AK, Ijaz M, Yasin H, Nawazish S, Sadiq S, Kaleem S, Murtaza G. Development, Characterization, and Burn Wound-Healing Potential of Neomycin-Loaded Clay-Reinforced Nanofibers. ACS OMEGA 2023; 8:39014-39022. [PMID: 37901515 PMCID: PMC10601437 DOI: 10.1021/acsomega.3c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Background: Skin wounds affect millions of individuals around the world, and their treatment is expensive. Objective: The purpose of this study was to make neomycin-loaded CG/PVA/PAN (NCPP) nanofibers to improve wound healing. Methods: The NCPP nanofibers were characterized by using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. Drug solubility, dissolution, swelling ratio, erosion, and antibacterial studies were performed. The in vivo wound healing study of nanofibers was performed in a rabbit model and was supported by % age wound closure and histopathology. Results: The results of SEM showed some sort of agglomeration on the surface of fibers, while TGA showed 10% more stability for drug-loaded nanofibers. The drug permeation study indicated that the formulation with 15% PVA showed a controlled release profile of the drug. The NCPP nanofibers had an appreciable water retention capability. The NCPP nanofibers showed appreciable antibacterial activity against Enterococcus faecalis (Gram-positive bacteria) and Klebsiella pneumonia (Gram-negative bacteria). The wound healing study showed the better healing properties of NCPP nanofibers within 15 days. Conclusion: The findings helped us to conclude that the NCPP nanofibers were successfully fabricated and found to have a promising role in infected wound healing.
Collapse
Affiliation(s)
- Badriyah
Shadid Alotaibi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abida Kalsoom Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Munaza Ijaz
- Department
of Microbiology, University of Central Punjab, Lahore 54000, Pakistan
| | - Haya Yasin
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Shamyla Nawazish
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Shazma Sadiq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saba Kaleem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ghulam Murtaza
- Department
of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
9
|
Amani M, Rakhshani A, Maghsoudian S, Rasoulzadehzali M, Yoosefi S, Keihankhadiv S, Fatahi Y, Darbasizadeh B, Ebrahimi SM, Ejarestaghi NM, Farhadnejad H, Motasadizadeh H. pH-sensitive bilayer electrospun nanofibers based on ethyl cellulose and Eudragit S-100 as a dual delivery system for treatment of the burn wounds; preparation, characterizations, and in-vitro/in-vivo assessment. Int J Biol Macromol 2023; 249:126705. [PMID: 37673162 DOI: 10.1016/j.ijbiomac.2023.126705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
A pH-sensitive bilayer electrospun nanofibrous mat containing both antibiotic (gentamicin sulfate, GEN) and non-steroidal anti-inflammatory (diclofenac sodium, DIC) drugs was fabricated for burn wound dressing by electrospinning technique, in which ethyl cellulose (EC) and ethyl cellulose/Eudragit S-100 (EC/ES-100) formed the top and bottom layers, respectively. The fabricated pH-sensitive bilayer electrospun nanofibrous mats were characterized from aspects of both structure and efficiency. Physicochemical properties were investigated via SEM, FTIR, and TGA. The swelling ratio and in vitro drug release of the fabricated nanofibrous mats were studied in different pHs. MTT was applied to assess the safety of the fiber mats. Finally, the in vivo efficiency of the designed pH-sensitive bilayer electrospun nanofibrous mats was examined on the male Wistar rats. Based on the histological analysis and wound healing test (in vivo animal experiments), the (ES100/EC-DIC/GEN)-(EC) pH-sensitive bilayer nanofibrous mat displayed faster wound healing than other bilayer nanofibrous mat. As a result, (ES100/EC-DIC/GEN)-(EC) bilayer nanofibrous mat with pH-responsion could accelerate the burn wound healing process via decreasing the adverse effects of GEN and DIC as topical antimicrobial and anti-inflammatory agents, receptively.
Collapse
Affiliation(s)
- Mahdiyar Amani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rakhshani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Rasoulzadehzali
- Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Keihankhadiv
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Negin Mousavi Ejarestaghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Hiwrale A, Bharati S, Pingale P, Rajput A. Nanofibers: A current era in drug delivery system. Heliyon 2023; 9:e18917. [PMID: 37674834 PMCID: PMC10477438 DOI: 10.1016/j.heliyon.2023.e18917] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Nanofibers have a large area of surface variable 3D topography, porosity, and adaptable surface functions. Several researchers are researching nanofiber technology as a potential solution to the current problems in several fields. It manages cardiovascular disorders, infectious diseases, gastrointestinal tract-associated diseases, neurodegenerative diseases, pain treatment, contraception, and wound healing. The nanofibers are fabricated using various fabrication techniques, such as electrospinning, phase separation, physical Fabrication, and chemical fabrication. Depending on their intended use, nanofibers are manufactured using a variety of polymers. It comprises natural polymers, semi-synthetic polymers, synthetic polymers, metals, metal oxides, ceramics, carbon, nonporous materials, mesoporous materials, hollow structures, core-shell structures, biocomponents, and multi-component materials. Nanofiber composites are a good alternative for targeted gene delivery, protein and peptide delivery, and growth factor delivery. Thus, nanofibers have huge potential in drug delivery, which enables them to be used for various applications and can revolutionize these therapeutic areas. This review systematically studied nanofibers' history, advantages, disadvantages, types, and polymers used in nanofiber technology. Further, polymers and their types used in the preparation of nanofibers were summarised. Mainly review article focuses on the fabrication method, i.e., electrospinning and its types. Finally, the article discussed the applications and recent advancements of nanofabrication technology.
Collapse
Affiliation(s)
- Abhijeet Hiwrale
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, 411038, Maharashtra, India
| | - Swati Bharati
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, 411038, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, 411038, Maharashtra, India
| |
Collapse
|
11
|
Agrawal G, Aswath S, Laha A, Ramakrishna S. Electrospun Nanofiber-Based Drug Carrier to Manage Inflammation. Adv Wound Care (New Rochelle) 2023; 12:529-543. [PMID: 36680757 DOI: 10.1089/wound.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significance: Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most widely prescribed drugs to treat inflammation and related ailments. In recent years, loading these drugs onto nanodevices like nanoparticles, nanofibers, etc. as a drug delivery system has gained momentum due to its desirable properties and advantages. The purpose of this review is to examine the existing research on the potential and novel use of nanofiber-assisted delivery of NSAIDs. Recent Advances: Electrospun nanofibers have recently garnered considerable attention from researchers in a variety of sectors. They have proved to be promising vehicles for drug delivery systems because of their exceptional and favorable features like prolonged drug release, controllable porosity, and high surface area. In this article, various polymers and even combinations of polymers loaded with single or multiple drugs were analyzed to achieve the desired drug release rates (burst, sustained, and biphasic) from the electrospun nanofibers. Critical Issues: The administration of these medications can induce major adverse effects, causing patients discomfort. Thus, encapsulating these drugs within electrospun nanofibers helps to reduce the severity of side effects while also providing additional benefits such as targeted and controlled drug release, reduced toxicity, and long-lasting effects of the drug with lower amounts of administration. Future Directions: This review covers previous research on the delivery of NSAIDs using electrospun nanofibers as the matrix. Also, this study intends to aid in the development of enhanced drug delivery systems for the treatment of inflammation and related issues.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Surabhi Aswath
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Anindita Laha
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
- Department of Chemical Engineering, Calcutta Institute of Technology, Howrah, India
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Ullah S, Hashmi M, Shi J, Kim IS. Fabrication of Electrospun PVA/Zein/Gelatin Based Active Packaging for Quality Maintenance of Different Food Items. Polymers (Basel) 2023; 15:2538. [PMID: 37299339 PMCID: PMC10255895 DOI: 10.3390/polym15112538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In this research, electrospun PVA/Zein/Gelatin based tri-component active food packaging has been fabricated to enhance the shelf life of food by assuring the food quality (freshness, taste, brittleness, color, etc.) for longer. Electrospinning imparts good morphological properties along with breathability in nanofibrous mats. Electrospun active food packaging has been characterized to investigate the morphological, thermal, mechanical, chemical, antibacterial and antioxidant properties. Results of all tests indicated that the PVA/Zein/Gelatin nanofiber sheet possessed good morphology, thermal stability, mechanical strength, good antibacterial properties along with excellent antioxidant properties, which makes it the most suitable food packaging for increasing the shelf life of different food items like sweet potatoes, potatoes and kimchi. Shelf life of sweet potatoes and potatoes was observed for a period of 50 days, and shelf life of the kimchi was observed for a period of 30 days. It was concluded that nanofibrous food packaging may enhance the shelf life of fruit and vegetables because of their better breathability and antioxidant properties.
Collapse
Affiliation(s)
- Sana Ullah
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University, Ueda Campus, Ueda 386-8567, Nagano, Japan;
- Institute of Inorganic Chemistry I, Helmholtz Institute of Ulm (HIU), Ulm University, Helmholtzstrasse 11, 89081 Ulm, Baden Württemberg, Germany
| | - Motahira Hashmi
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University, Ueda Campus, Ueda 386-8567, Nagano, Japan;
| | - Jian Shi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan;
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University, Ueda Campus, Ueda 386-8567, Nagano, Japan;
| |
Collapse
|
13
|
Yang S, Xu K, Guan S, Zou L, Gao L, Wang J, Tian H, Li H, Fang Y, Li H. Polymer nanofiber network reinforced gold electrode array for neural activity recording. Biomed Eng Lett 2023; 13:111-118. [PMID: 37124105 PMCID: PMC10130319 DOI: 10.1007/s13534-022-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Flexible and stretchable neural electrodes are promising tools for high-fidelity interfacing with soft and curvilinear brain surface. Here, we describe a flexible and stretchable neural electrode array that consists of polyacrylonitrile (PAN) nanofiber network reinforced gold (Au) film electrodes. Under stretching, the interweaving PAN nanofibers effectively terminate the formation of propagating cracks in the Au films and thus enable the formation of a dynamically stable electrode-tissue interface. Moreover, the PAN nanofibers increase the surface roughness and active surface areas of the Au electrodes, leading to reduced electrochemical impedance and improved signal-to-noise ratio. As a result, PAN nanofiber network reinforced Au electrode arrays can allow for reliable in vivo multichannel recording of epileptiform activities in rats. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-022-00257-5.
Collapse
Affiliation(s)
- Siting Yang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shouliang Guan
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Liang Zou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Gao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinfen Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Hui Li
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052 China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Hongbian Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| |
Collapse
|
14
|
Zidarič T, Skok K, Orthaber K, Pristovnik M, Gradišnik L, Maver T, Maver U. Multilayer Methacrylate-Based Wound Dressing as a Therapeutic Tool for Targeted Pain Relief. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2361. [PMID: 36984241 PMCID: PMC10053588 DOI: 10.3390/ma16062361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
This study presents an innovative wound dressing system that offers a highly effective therapeutic solution for treating painful wounds. By incorporating the widely used non-steroidal anti-inflammatory drug diclofenac, we have created an active wound dressing that can provide targeted pain relief with ease. The drug was embedded within a biocompatible matrix composed of polyhydroxyethyl methacrylate and polyhydroxypropyl methacrylate. The multilayer structure of the dressing, which allows for sustained drug release and an exact application, was achieved through the layer-by-layer coating technique and the inclusion of superparamagnetic iron platinum nanoparticles. The multilayered dressings' physicochemical, structural, and morphological properties were characterised using various methods. The synergistic effect of the incorporated drug molecules and superparamagnetic nanoparticles on the surface roughness and release kinetics resulted in controlled drug release. In addition, the proposed multilayer wound dressings were found to be biocompatible with human skin fibroblasts. Our findings suggest that the developed wound dressing system can contribute to tailored therapeutic strategies for local pain relief.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Kristijan Skok
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
| | - Kristjan Orthaber
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matevž Pristovnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
15
|
Lin X, Zheng L, Zhang M, Qin Y, Liu Y, Li H, Li C. Simultaneous boost of anodic electron transfer and exoelectrogens enrichment by decorating electrospinning carbon nanofibers in microbial fuel cell. CHEMOSPHERE 2022; 308:136434. [PMID: 36113652 DOI: 10.1016/j.chemosphere.2022.136434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/07/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cell (MFC) is a promising technology in wastewater recovery driven by microbial metabolism. However, the low power output resulting from the sluggish extracellular electron transfer (EET) between the anode surface and exoelectrogens dramatically restricted the further application. This study fabricated a high-performance anode by decorating porous and conductive electrospinning carbon nanofibers (CNFs). The maximum power density in MFC modified with 14 wt% polyacrylonitrile CNFs (M-CNF14, 9.6 ± 0.2 W m-3) was 1.9 and 2.7 times higher than carbon black modified MFC (M-CB, 5.1 ± 0.1 W m-3) and the blank (M-BA, 3.6 ± 0.1 W m-3), respectively. Denser biofilm and more microbial nanowires were observed in the M-CNF14 anode than in other conditions. Furthermore, the redox peak current of c-type cytochrome was 1.7-21 times higher in M-CNF14 than in the blank control, verifying the preferable EET activity. Several exoelectrogens like Petrimonas and Comamonas were enriched in M-CNF14 and showed a positive correlation to power generation. Besides, more simplified and modular interrelations among exoelectrogens and other bacteria were obtained in M-CNF14. This study revealed the microbial-related mechanism for simultaneously improving EET and exoelectrogens enrichment by CNFs modified anode, providing guidelines for high-performance wastewater recovery.
Collapse
Affiliation(s)
- Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Linshan Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Min Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Yue Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Yuanfeng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Huiyu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China.
| |
Collapse
|
16
|
Liao X, Jérôme V, Agarwal S, Freitag R, Greiner A. High Strength and High Toughness Electrospun Multifibrillar Yarns with Highly Aligned Hierarchy Intended as Anisotropic Extracellular Matrix. Macromol Biosci 2022; 22:e2200291. [PMID: 36126173 DOI: 10.1002/mabi.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Indexed: 01/15/2023]
Abstract
Electrospun nanofibers can be effectively used as a surrogate for extracellular matrices (ECMs). However, in the context of cellular mechanobiology, their mechanical performances can be enhanced by using nanofibrous materials with a high level of structural organization. Herein, this work develops multifibrillar yarns with superior mechanical performance based on biocompatible polyacrylonitrile (PAN) as surrogate ECM. Nearly perfect aligned nanofibers along with the axis of the multifibrillar yarn are prepared. These highly aligned yarns exhibit high strength, high toughness, good stress relaxation behavior, and are robust enough for technical or medical applications. Further, this work analyzes the influence of the highly aligned-hierarchical topological structure of the material on cell proliferation and cell orientation using cells derived from epithelial and connective tissues. Compared to nonoriented electrospun multifibrillar yarns and flat films, the well-ordered topology in the electrospun PAN multifibrillar yarns triggers an improved proliferation of fibroblasts and epithelial cells. Fibroblasts acquire an elongated morphology analogous to their behavior in the natural ECM. Hence, this heterogeneous multifibrillar material can be used to restore or reproduce the ECM for tissue engineering applications, notably in the skeletal muscle and tendon.
Collapse
Affiliation(s)
- Xiaojian Liao
- University of Bayreuth, Macromolecular Chemistry, Bavarian Polymer Institute, 95440, Bayreuth, Germany
| | - Valérie Jérôme
- University of Bayreuth, Process Biotechnology, 95440, Bayreuth, Germany
| | - Seema Agarwal
- University of Bayreuth, Macromolecular Chemistry, Bavarian Polymer Institute, 95440, Bayreuth, Germany
| | - Ruth Freitag
- University of Bayreuth, Process Biotechnology, 95440, Bayreuth, Germany
| | - Andreas Greiner
- University of Bayreuth, Macromolecular Chemistry, Bavarian Polymer Institute, 95440, Bayreuth, Germany
| |
Collapse
|
17
|
Electrospun non-wovens potential wound dressing material based on polyacrylonitrile/chicken feathers keratin nanofiber. Sci Rep 2022; 12:15460. [PMID: 36104428 PMCID: PMC9474820 DOI: 10.1038/s41598-022-19390-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Electrospinning nanofibers have a tremendous interest in biomedical applications such as tissue engineering, drug administration, and wound healing because of their ability to replicate and restore the function of the natural extracellular matrix found in tissues. The study’s highlight is the electrospinning preparation and characterization of polyacrylonitrile with chicken feather keratin as an additive. In this study, keratin was extracted from chicken feather waste using an environmentally friendly method and used to reinforce polymeric nanofiber mats. Scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy were used to examine the morphology and the structure of the prepared nanofiber mats. The effect of keratin on the porosity and the tensile strength of reinforcing nanofibers is investigated. The porosity ratio of the nanofiber mats goes up from 24.52 ± 2.12 for blank polyacrylonitrile (PAN (NF)) to 90.89 ± 1.91% for polyacrylonitrile nanofiber with 0.05 wt% keratin (PAN/0.05% K). Furthermore, keratin reinforcement improves the nanofiber's mechanical properties, which are important for wound dressing application, as well as its antibacterial activity without causing hemolysis (less than 2%). The best antibacterial activities were observed against Pseudomonas aeruginosa (30 ± 0.17 mm inhibition zone) and Staphylococcus aureus (29 ± 0.31 mm inhibition zone) for PAN/0.05% K sample, according to the antibacterial test. This research has a good potential to broaden the use of feather keratin-based nanofibers in wound healing.
Collapse
|
18
|
Wlodarczyk J, Musial-Kulik M, Jelonek K, Stojko M, Karpeta-Jarzabek P, Pastusiak M, Janeczek H, Dobrzynski P, Sobota M, Kasperczyk J. Dual-jet electrospun PDLGA/PCU nonwovens as promising mesh implant materials with controlled release of sirolimus and diclofenac. Int J Pharm 2022; 625:122113. [PMID: 35973592 DOI: 10.1016/j.ijpharm.2022.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Dual-jet electrospinning was employed to produce two-component, partially degradable drug releasing nonwovens with interlacing of poly(D,L-lactide-co-glycolide) (PDLGA) and different poly(carbonate urethanes) (PCUs). Diclofenac sodium and sirolimus were released simultaneously from the copolyester carrier. The research focused on determining of release profiles of drugs, depending on the hydrophilicity of introduced PCU nanofibers. The influence of drugs incorporation on the hydrolytic degradation of the PDLGA and mechanical properties of nonwovens was also studied. Evaluation for interaction with cells in vitro was investigated on a fibroblast cell line in cytotoxicity and surface adhesion tests. Significant changes in drugs release rate, depending on the applied PCU were observed. It was also noticed, that hydrophilicity of drugs significantly influenced the hydrolytic degradation mechanism and surface erosion of the PDLGA, as well as the tensile strength of nonwovens. Tests carried out on cells in an in vitro experiment showed that introduction of sirolimus caused a slight reduction in the viability of fibroblasts as well as a strong limitation in their capability to colonize the surface of fibers. Due to improvement of mechanical strength and the ability to controlled drugs release, the obtained material may be considered as prospect surgical mesh implant in the treatment of hernia.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Monika Musial-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Mateusz Stojko
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland; Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200 Sosnowiec, Poland
| | - Paulina Karpeta-Jarzabek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Malgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Piotr Dobrzynski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Michal Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland.
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland; Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200 Sosnowiec, Poland
| |
Collapse
|
19
|
Huang C, Xu X, Fu J, Yu DG, Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers (Basel) 2022; 14:3266. [PMID: 36015523 PMCID: PMC9415690 DOI: 10.3390/polym14163266] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge role in it. Electrospinning technology is simple to operate. Electrospun nanofibers have a high specific surface area, high porosity, high oxygen permeability, and excellent mechanical properties, which show great utilization value in the manufacture of wound dressings. As one of the most popular reactive and functional synthetic polymers, polyacrylonitrile (PAN) is frequently explored to create nanofibers for a wide variety of applications. In recent years, researchers have invested in the application of PAN nanofibers in wound dressings. Research on spun nanofibers is reviewed, and future development directions and prospects of electrospun PAN nanofibers for wound dressings are proposed.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhao Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
20
|
Ullah S, Hashmi M, Kim IS. Electrospun Composite Nanofibers for Functional Applications. Polymers (Basel) 2022; 14:2290. [PMID: 35683961 PMCID: PMC9183182 DOI: 10.3390/polym14112290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
of the Special Issue: [...].
Collapse
Affiliation(s)
- Sana Ullah
- Graduate School of Medicine Science and Technology, Department of Science and Technology, Division of Smart Material, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Motahira Hashmi
- Graduate School of Medicine Science and Technology, Department of Science and Technology, Division of Smart Material, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Ick Soo Kim
- Graduate School of Medicine Science and Technology, Department of Science and Technology, Division of Smart Material, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
21
|
Preparation and Characterization of Gatifloxacin-Loaded Polyacrylonitrile Nanofiber for the Management of Dry Eye Infection. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Ullah A, Sarwar MN, Wang FF, Kharaghani D, Sun L, Zhu C, Yoshiko Y, Mayakrishnan G, Lee JS, Kim IS. In vitro biocompatibility, antibacterial activity, and release behavior of halloysite nanotubes loaded with diclofenac sodium salt incorporated in electrospun soy protein isolate/hydroxyethyl cellulose nanofibers. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
N-halamine-decorated electrospun polyacrylonitrile nanofibrous membranes: characterization and antimicrobial properties. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Opálková Šišková A, Bučková M, Kroneková Z, Kleinová A, Nagy Š, Rydz J, Opálek A, Sláviková M, Eckstein Andicsová A. The Drug-Loaded Electrospun Poly(ε-Caprolactone) Mats for Therapeutic Application. NANOMATERIALS 2021; 11:nano11040922. [PMID: 33916638 PMCID: PMC8066245 DOI: 10.3390/nano11040922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Diclofenac sodium salt (DSS)-loaded electrospun nanofiber mats on the base of poly(ε-caprolactone) (PCL) were investigated as biocompatible nanofibrous mats for medical applications with the ability to inhibit bacterial infections. The paper presents the characteristics of fibrous mats made by electrospinning and determines the effect of medicament on the fiber morphology, chemical, mechanical and thermal properties, as well as wettability. PCL and DSS-loaded PCL nanofibrous mats were characterized using scanning electron microscopy, transmission electron microscopy, attenuated total reflectance-Fourier transform infrared spectrometry, dynamic mechanical analysis, and contact angle measurements. Electron paramagnetic resonance measurements confirmed the lifetime of DSS before and after application of high voltage during the electrospinning process. In vitro biocompatibility was studied, and it was proved to be of good viability with ~92% of the diploid human cells culture line composed of lung fibroblast (MRC 5) after 48 h of incubation. Moreover, the significant activity of DSS-loaded nanofibers against cancer cells, Ca Ski and HeLa, was established as well. It was shown that 12.5% (m/V) is the minimal concentration for antibacterial activity when more than 99% of Escherichia coli (Gram-negative) and 99% of Staphylococcus aureus (Gram-positive) have been exterminated.
Collapse
Affiliation(s)
- Alena Opálková Šišková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
- Correspondence: (A.O.S.); (A.E.A.); Tel.: +421-2-3229-4301 (A.O.S.); +421-2-3229-4357 (A.E.A.)
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 51 Bratislava, Slovakia;
| | - Zuzana Kroneková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
| | - Angela Kleinová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
| | - Štefan Nagy
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 13 Bratislava, Slovakia; (Š.N.); (A.O.)
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland;
| | - Andrej Opálek
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 13 Bratislava, Slovakia; (Š.N.); (A.O.)
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia;
| | - Anita Eckstein Andicsová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; (Z.K.); (A.K.)
- Correspondence: (A.O.S.); (A.E.A.); Tel.: +421-2-3229-4301 (A.O.S.); +421-2-3229-4357 (A.E.A.)
| |
Collapse
|