Mendez NF, Altorbaq AS, Müller AJ, Kumar SK. Organizing Nanoparticles in Semicrystalline Polymers by Modifying Particle Diffusivity.
ACS Macro Lett 2022;
11:882-888. [PMID:
35763599 DOI:
10.1021/acsmacrolett.2c00287]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously shown that semicrystalline polymers can be reinforced by adding nanoparticles (NPs) and then ordering them into specific motifs using the crystallization process. A key result we have found is that when the spherulite growth rate is slowed below a critical value, then, NPs can order into the amorphous interlamellar regions of the semicrystalline structure. The effects of spherulite growth rate in this context have previously been examined, and here we focus on the role of NP diffusivity. We achieve this goal by changing the poly(ethylene oxide) (PEO) molecular weight as a route to altering the matrix viscosity. In particular, four molecular weights of PEO were employed ranging from 5.4-46 kDa. Each sample was loaded with 10 vol % of bare 14 nm diameter silica NPs. After initially studying spherulite growth rates, experiments were designed to fix the spherulite growth rate across sample molecular weights to study particle ordering, induced by polymer crystallization. We find that, at the fastest growth rate studied (12 μm/s), the lowest molecular weight sample showed the highest order, presumably due to enhanced particle mobility. However, as the spherulite growth rate is slowed, the maximum ordering behavior is observed at intermediate molecular weights. The trend observed at slow growth rates is explained by the large-scale segregation of NPs (presumably into the grain boundaries, i.e., the interspherulitic regions); evidence for this is the observed transition of spherulite growth to diffusion-control at slow growth rates in the lowest molecular weight PEO sample studied.
Collapse