1
|
Hu S, Li F, Zuo P. Numerical Simulation of Laser Transmission Welding-A Review on Temperature Field, Stress Field, Melt Flow Field, and Thermal Degradation. Polymers (Basel) 2023; 15:polym15092125. [PMID: 37177271 PMCID: PMC10181022 DOI: 10.3390/polym15092125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Laser transmission welding (LTW) is an excellent process for joining plastics and is widely used in industry. Numerical simulation is an important method and area for studying LTW. It can effectively shorten the experimental time and reduce research costs, aid in understanding the welding mechanism, and enable the acquisition of ideal process parameters. To enhance understanding of numerical simulation studies on LTW and facilitate research in this area, this paper presents a comprehensive overview of the progress made in numerical simulation of LTW, covering the following aspects: (a) characteristics of the three heat source models for LTW temperature field simulation, including surface heat source model, volumetric heat source model, and hybrid heat source model, along with the methods, results, and applications of temperature field simulation based on these models and experimental validation; (b) numerical simulation of thermal and residual stresses based on the temperature field; (c) numerical simulation of the melt flow field; and (d) predictive simulation of material degradation. The conclusion of the review and the prospects for further research work are eventually addressed.
Collapse
Affiliation(s)
- Shuangxi Hu
- Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Mechanical and Electrical Engineering, Hubei Open University, Wuhan 430070, China
| | - Fang Li
- Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Pei Zuo
- Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
2
|
Modification of Polyhydroxyalkanoates Polymer Films Surface of Various Compositions by Laser Processing. Polymers (Basel) 2023; 15:polym15030531. [PMID: 36771832 PMCID: PMC9920739 DOI: 10.3390/polym15030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The results of surface modification of solvent casting films made from polyhydroxyalkanoates (PHAs) of various compositions are presented: homopolymer poly-3-hydroxybutyrate P(3HB) and copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate(4HB), and 3-hydroxyhexanoate (3HHx) monomers treated with a CO2 laser in continuous and quasi-pulsed radiation modes. The effects of PHAs film surface modification, depending on the composition and ratio of monomers according to the results of the study of SEM and AFM, contact angles of wetting with water, adhesion and growth of fibroblasts have been revealed for the laser radiation regime used. Under continuous irradiation with vector lines, melted regions in the form of grooves are formed on the surface of the films, in which most of the samples have increased values of the contact angle and a decrease in roughness. The quasi-pulse mode by the raster method causes the formation of holes without pronounced melted zones, the total area of which is lower by 20% compared to the area of melted grooves. The number of viable fibroblasts NIH 3T3 on the films after the quasi-pulse mode is 1.5-2.0 times higher compared to the continuous mode, and depends to a greater extent on the laser treatment mode than on the PHAs' composition. The use of various modes of laser modification on the surface of PHAs with different compositions makes it possible to influence the morphology and properties of polymer films in a targeted manner. The results that have been obtained contribute to solving the critical issue of functional biodegradable polymeric materials.
Collapse
|
3
|
Predicting Characteristics of Dissimilar Laser Welded Polymeric Joints Using a Multi-Layer Perceptrons Model Coupled with Archimedes Optimizer. Polymers (Basel) 2023; 15:polym15010233. [PMID: 36616582 PMCID: PMC9824861 DOI: 10.3390/polym15010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 01/04/2023] Open
Abstract
This study investigates the application of a coupled multi-layer perceptrons (MLP) model with Archimedes optimizer (AO) to predict characteristics of dissimilar lap joints made of polymethyl methacrylate (PMMA) and polycarbonate (PC). The joints were welded using the laser transmission welding (LTW) technique equipped with a beam wobbling feature. The inputs of the models were laser power, welding speed, pulse frequency, wobble frequency, and wobble width; whereas, the outputs were seam width and shear strength of the joint. The Archimedes optimizer was employed to obtain the optimal internal parameters of the multi-layer perceptrons. In addition to the Archimedes optimizer, the conventional gradient descent technique, as well as the particle swarm optimizer (PSO), was employed as internal optimizers of the multi-layer perceptrons model. The prediction accuracy of the three models was compared using different error measures. The AO-MLP outperformed the other two models. The computed root mean square errors of the MLP, PSO-MLP, and AO-MLP models are (39.798, 19.909, and 2.283) and (0.153, 0.084, and 0.0321) for shear strength and seam width, respectively.
Collapse
|
4
|
Chen D, Wang Y, Zhou H, Huang Z, Zhang Y, Guo CF, Zhou H. Current and Future Trends for Polymer Micro/Nanoprocessing in Industrial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200903. [PMID: 35313049 DOI: 10.1002/adma.202200903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Polymers are widely used in optical devices, electronic devices, energy-harvesting/storage devices, and sensors, owing to their low weight, excellent flexibility, and simple fabrication process. With advancements in micro/nanoprocessing techniques and more demanding application requirements, it is becoming necessary to realize high-resolution fabrication of polymers to prepare miniaturized devices. This is particularly because conventional processing technologies suffer from high thermal stress and strong adhesion/friction, which can irreversibly damage the micro/nanostructures of miniaturized devices. In addition, although the use of advanced fabrication methods to prepare high-resolution micro/nanostructures is explored, these methods are limited to laboratory research or small-batch production. This review focuses on the micro/nanoprocessing of polymeric materials and devices with high spatial precision and replication accuracy for industrial applications. Specifically, the current state-of-the-art techniques and future trends for micro/nanomolding, high-energy beam processing, and micro/nanomachining are discussed. Moreover, an overview of the fabrication and applications of various polymer-based elements and devices such as microlenses, biosensors, and transistors is provided. These techniques are expected to be widely applied for multiscale and multimaterial processing as well as for multifunction integration in next-generation integrated devices, such as photoelectric, smart, and biodegradable devices.
Collapse
Affiliation(s)
- Dan Chen
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunming Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Helezi Zhou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhigao Huang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun Zhang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huamin Zhou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Hager R, Forsich C, Duchoslav J, Burgstaller C, Stifter D, Weghuber J, Lanzerstorfer P. Microcontact Printing of Biomolecules on Various Polymeric Substrates: Limitations and Applicability for Fluorescence Microscopy and Subcellular Micropatterning Assays. ACS APPLIED POLYMER MATERIALS 2022; 4:6887-6896. [PMID: 36277174 PMCID: PMC9578008 DOI: 10.1021/acsapm.2c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Polymeric materials play an emerging role in biosensing interfaces. Within this regard, polymers can serve as a superior surface for binding and printing of biomolecules. In this study, we characterized 11 different polymer foils [cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), DI-Acetate, Lumirror 4001, Melinex 506, Melinex ST 504, polyamide 6, polyethersulfone, polyether ether ketone, and polyimide] to test for the applicability for surface functionalization, biomolecule micropatterning, and fluorescence microscopy approaches. Pristine polymer foils were characterized via UV-vis spectroscopy. Functional groups were introduced by plasma activation and epoxysilane-coating. Polymer modification was evaluated by water contact angle measurement and X-ray photoelectron spectroscopy. Protein micropatterns were fabricated using microcontact printing. Functionalized substrates were characterized via fluorescence contrast measurements using epifluorescence and total internal reflection fluorescence microscopy. Results showed that all polymer substrates could be chemically modified with epoxide functional groups, as indicated by reduced water contact angles compared to untreated surfaces. However, transmission and refractive index measurements revealed differences in important optical parameters, which was further proved by fluorescence contrast measurements of printed biomolecules. COC, COP, and PMMA were identified as the most promising alternatives to commonly used glass coverslips, which also showed superior applicability in subcellular micropatterning experiments.
Collapse
Affiliation(s)
- Roland Hager
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Christian Forsich
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Jiri Duchoslav
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Christoph Burgstaller
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- Transfercenter
für Kunststofftechnik GmbH, 4600 Wels, Austria
| | - David Stifter
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Julian Weghuber
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- FFoQSI—Austrian
Competence Center for Feed and Food Quality, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| |
Collapse
|
6
|
Korycki A, Garnier C, Bonmatin M, Laurent E, Chabert F. Assembling of Carbon Fibre/PEEK Composites: Comparison of Ultrasonic, Induction, and Transmission Laser Welding. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6365. [PMID: 36143674 PMCID: PMC9503134 DOI: 10.3390/ma15186365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
In the present work, an ultrasonic, an induction, and a through transmission laser welding were compared to join carbon fibre reinforced polyetheretherketone (CF/PEEK) composites. The advantages and drawbacks of each process are discussed, as well as the material properties required to fit each process. CF/PEEK plates were consolidated at 395 °C with an unidirectional sequence and cross-stacking ply orientation. In some configurations, a polyetherimide (PEI) layer or substrate was used. The thermal, mechanical, and optical properties of the materials were measured to highlight the specific properties required for each process. The drying conditions were defined as 150 °C during at least 8 h for PEI and 24 h for CF/PEEK to avoid defects due to water. The optical transmission factor of PEI is above 40% which makes it suitable for through transmission laser welding. The thermal conductivity of CF/PEEK is at most 55 W·(m·K)-1, which allows it to weld by induction without a metallic susceptor. Ultrasonic welding is the most versatile process as it does not necessitate any specific properties. Then, the mechanical resistance of the welds was measured by single lap shear. For CF/PEEK on CF/PEEK, the maximum lap shear strength (LSS) of 28.6 MPa was reached for a joint obtained by ultrasonic welding, while an induction one brought 17.6 MPa. The maximum LSS of 15.2 MPa was obtained for PEI on CF/PEEK assemblies by laser welding. Finally, interfacial resistances were correlated to the fracture modes through observations of the fractured surfaces. CF/PEEK on CF/PEEK joints resulted in mixed cohesive/adhesive failure at the interface and within the inner layers of both substrates. This study presents a guideline to select the suitable welding process when assembling composites for the aerospace industry.
Collapse
Affiliation(s)
- Adrian Korycki
- Laboratoire Génie de Production, ENIT-INPT, University of Toulouse, 47 Avenue d’Azereix, 65016 Tarbes, France
| | - Christian Garnier
- Laboratoire Génie de Production, ENIT-INPT, University of Toulouse, 47 Avenue d’Azereix, 65016 Tarbes, France
| | - Margot Bonmatin
- Laboratoire Génie de Production, ENIT-INPT, University of Toulouse, 47 Avenue d’Azereix, 65016 Tarbes, France
- Institut Clement Ader (ICA), University of Toulouse, CNRS, IMT Mines Albi, INSA, ISAE-SUPAERO, UPS, Campus Jarlard, 81013 Albi, France
| | - Elisabeth Laurent
- CNES, Sous-Direction Assurance Qualité, Service Technologies, Matériaux et Procédés, 18 Avenue Edouard Belin, 31401 Toulouse, France
| | - France Chabert
- Laboratoire Génie de Production, ENIT-INPT, University of Toulouse, 47 Avenue d’Azereix, 65016 Tarbes, France
| |
Collapse
|
7
|
Wu H, Dave F, Mokhtari M, Ali MM, Sherlock R, McIlhagger A, Tormey D, McFadden S. On the Application of Vickers Micro Hardness Testing to Isotactic Polypropylene. Polymers (Basel) 2022; 14:polym14091804. [PMID: 35566972 PMCID: PMC9102282 DOI: 10.3390/polym14091804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hardness is a useful measure of a material’s resistance to permanent indentation; but for viscoelastic polymers, hardness data are highly dependent on the test type and the parameter set chosen. Vickers microhardness testing is used to leave small indents (<150 µm) and is shown to be applicable to polymers. A detailed investigation of the required steps for microhardness testing in isotactic polypropylene (iPP) is provided. Samples should be mounted in epoxy resin in order to maintain curing temperatures at room temperature. Mounted samples can be ground and polished in a semi-automatic polisher using graduated SiC paper (wet grinding) but progressing onto alumina suspension for polishing. Final polishing should be performed with 0.05-µm alumina suspension. The hardness measured was shown to be dependent on load and dwell time with a much greater dependency on dwell time. Strain recovery was shown to be completed after a time period equal to the dwell time. This study shows that indents can be measured thereafter, and it is recommended that they be measured within a 24 h period after the indent was created. After data fitting, the equation for hardness was shown to follow a power law with load and dwell time as the main variables. Fitting parameters were compared to those found in the literature, and it was found that parameters were significantly different to those reported elsewhere. Therefore, this study highlights the importance of calibrating on a case-by-case basis. Finally, to show the usefulness of the Vickers micro-hardness testing method, the calibrated test method was applied on iPP with additions of carbon black up to 3 wt.%. Comparisons were made with data from the literature, but the hardness data generated in our work were found to be at least twice that reported in the literature. The testing parameters were not cited in the literature: specifically, the dwell time was not provided, and this generated doubt on the usefulness of the cited data. Hence, this work is intended to serve as an exemplar of how to prepare and proceed with hardness testing of polymers.
Collapse
Affiliation(s)
- Hao Wu
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry BT48 7JL, UK
- Correspondence: (H.W.); (S.M.)
| | - Foram Dave
- Department of Mechanical and Manufacturing Engineering, Centre for Precision Engineering, Materials and Manufacturing Research, Institute of Technology Sligo, F91 YW50 Sligo, Ireland; (F.D.); (M.M.A.); (D.T.)
| | - Mozaffar Mokhtari
- National Graphene Institute and Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK;
- School of Engineering, Ulster University, Newtownabbey BT37 0QB, UK;
| | - Muhammad Mahmood Ali
- Department of Mechanical and Manufacturing Engineering, Centre for Precision Engineering, Materials and Manufacturing Research, Institute of Technology Sligo, F91 YW50 Sligo, Ireland; (F.D.); (M.M.A.); (D.T.)
| | - Richard Sherlock
- Department of Life Science, Institute of Technology Sligo, F91 YW50 Sligo, Ireland;
| | | | - David Tormey
- Department of Mechanical and Manufacturing Engineering, Centre for Precision Engineering, Materials and Manufacturing Research, Institute of Technology Sligo, F91 YW50 Sligo, Ireland; (F.D.); (M.M.A.); (D.T.)
| | - Shaun McFadden
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry BT48 7JL, UK
- Correspondence: (H.W.); (S.M.)
| |
Collapse
|
8
|
Optical Coherence Tomography for 3D Weld Seam Localization in Absorber-Free Laser Transmission Welding. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quality and reliability are of the utmost importance for manufacturing in the optical and medical industries. Absorber-free laser transmission welding enables the precise joining of identical polymers without additives or adhesives and is well-suited to meet the demands of the aforementioned industries. To attain sufficient absorption of laser energy without absorbent additives, thulium fiber lasers, which emit in the polymers’ intrinsic absorption spectrum, are used. Focusing the laser beam with a high numerical aperture provides significant intensity gradients inside the workpiece and enables selective fusing of the internal joining zone without affecting the surface of the device. Because seam size and position are crucial, the high-quality requirements demand internal weld seam monitoring. In this work, we propose a novel method to determine weld seam location and size using optical coherence tomography. Changes in optical material properties because of melting and re-solidification during welding allow for weld seam differentiation from the injection-molded base material. Automatic processing of the optical coherence tomography data enables the identification and measurement of the weld seam geometry. The results from our technique are consistent with microscopic images of microtome sections and demonstrate that weld seam localization in polyamide 6 is possible with an accuracy better than a tenth of a millimeter.
Collapse
|
9
|
Volova TG, Golubev AI, Nemtsev IV, Lukyanenko AV, Dudaev AE, Shishatskaya EI. Laser Processing of Polymer Films Fabricated from PHAs Differing in Their Monomer Composition. Polymers (Basel) 2021; 13:1553. [PMID: 34066143 PMCID: PMC8151816 DOI: 10.3390/polym13101553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
The study reports results of using a CO2-laser in continuous wave (3 W; 2 m/s) and quasi-pulsed (13.5 W; 1 m/s) modes to treat films prepared by solvent casting technique from four types of polyhydroxyalkanoates (PHAs), namely poly-3-hydroxybutyrate and three copolymers of 3-hydroxybutyrate: with 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate (each second monomer constituting about 30 mol.%). The PHAs differed in their thermal and molecular weight properties and degree of crystallinity. Pristine films differed in porosity, hydrophilicity, and roughness parameters. The two modes of laser treatment altered these parameters and biocompatibility in diverse ways. Films of P(3HB) had water contact angle and surface energy of 92° and 30.8 mN/m, respectively, and average roughness of 144 nm. The water contact angle of copolymer films decreased to 80-56° and surface energy and roughness increased to 41-57 mN/m and 172-290 nm, respectively. Treatment in either mode resulted in different modifications of the films, depending on their composition and irradiation mode. Laser-treated P(3HB) films exhibited a decrease in water contact angle, which was more considerable after the treatment in the quasi-pulsed mode. Roughness parameters were changed by the treatment in both modes. Continuous wave line-by-line irradiation caused formation of sintered grooves on the film surface, which exhibited some change in water contact angle (76-80°) and reduced roughness parameters (to 40-45 mN/m) for most films. Treatment in the quasi-pulsed raster mode resulted in the formation of pits with no pronounced sintered regions on the film surface, a more considerably decreased water contact angle (to 67-76°), and increased roughness of most specimens. Colorimetric assay for assessing cell metabolic activity (MTT) in NIH 3T3 mouse fibroblast culture showed that the number of fibroblasts on the films treated in the continuous wave mode was somewhat lower; treatment in quasi-pulsed radiation mode caused an increase in the number of viable cells by a factor of 1.26 to 1.76, depending on PHA composition. This is an important result, offering an opportunity of targeted surface modification of PHA products aimed at preventing or facilitating cell attachment.
Collapse
Affiliation(s)
- Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Alexey I. Golubev
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
- Special Design and Technological Bureau ‘Nauka’ Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/45 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences” 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Anna V. Lukyanenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Alexey E. Dudaev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ekaterina I. Shishatskaya
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia; (I.V.N.); (A.V.L.); (A.E.D.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|