1
|
Yang J, Peng Z, Tang W, Lv P, Wang Q. Enhanced Vanadium Redox Flow Battery Performance with New Amphoteric Ion Exchange Membranes. Macromol Rapid Commun 2024:e2400477. [PMID: 39254528 DOI: 10.1002/marc.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Vanadium redox flow batteries (VRFBs) depend on the separator membrane for their efficiency and cycle life. Herein, two amphoteric ion exchange membranes are synthesized, based on sulfonic acid group-grafted poly(p-terphenyl piperidinium), for VRFBs. Using ether-free poly(p-terphenyl piperidine) (PTP) as the polymer matrix, and sodium 2-bromoethanesulphonate (ES) and 1,4-butane sultone (BS) as grafting agents, We achieve quaternization of PTP through an environmentally friendly process without alkaline catalysts. PTP-ES and PTP-BS membranes exhibit low area resistance, high H+ permeability, and significantly reduced vanadium ion permeability, leading to exceptional ion selectivity, which is 3.06 × 106 S min cm-3 and 4.34 × 106 S min cm-3, respectively, three orders of magnitude higher than that of Nafion115 (0.27 × 104 S min cm-3). The VRFB with PTP-BS achieves a self-discharge duration of 190 h, compared to 86 h for Nafion 115. Additionally, under current densities of 40-160 mA cm-2, PTP-BS shows coulombic efficiencies of 98.1-99.1% and energy efficiencies of 92.0-82.1%, outperforming Nafion 115. The VRFB with PTP-BS also demonstrates excellent cycle stability and discharge capacity retention over 300 cycles at 100 mA cm-2. Therefore, the amphoteric PTP-BS membrane shows remarkable performance, offering significant potential for VRFB applications.
Collapse
Affiliation(s)
- Jingshuai Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
- Department of Chemistry, Lund University, Lund, SE-221, Sweden
| | - Zhen Peng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Weiqin Tang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Peiru Lv
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Qian Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
| |
Collapse
|
2
|
Van Cauter CJ, Li Y, Van Herck S, Vankelecom IFJ. Stability and Performance of Commercial Membranes in High-Temperature Organic Flow Batteries. MEMBRANES 2024; 14:177. [PMID: 39195429 DOI: 10.3390/membranes14080177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Redox flow batteries (RFB) often operate at extreme pH conditions and may require cooling to prevent high temperatures. The stability of the battery membranes at these extreme pH-values at high temperatures is still largely unknown. In this paper, a systematic screening of the performance and stability of nine commercial membranes at pH 14 and pH ≤ 0 with temperatures up to 80 °C is conducted in an organic aqueous RFB. Swelling, area resistance, diffusion crossover, battery performance and membrane stability after 40-80 °C temperature treatment are shown, after which a recommendation is made for different user scenarios. The Aquivion E98-05 membrane performed best for both the Tiron/2,7-AQDS battery and the DHPS/Fe(CN)6 battery at 40 mA/cm2, with stable results after 1 week of storage at 80 °C. At 80 mA/cm2, E-620-PE performed best in the DHPS/Fe(CN)6 battery, while Sx-050DK performed best in the Tiron/2,7-AQDS battery.
Collapse
Affiliation(s)
- Chiari J Van Cauter
- Membrane Technology Group (MTG), Division cMACS, Faculty Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium
| | - Yun Li
- Membrane Technology Group (MTG), Division cMACS, Faculty Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium
| | - Sander Van Herck
- Membrane Technology Group (MTG), Division cMACS, Faculty Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium
| |
Collapse
|
3
|
TiO 2 Containing Hybrid Composite Polymer Membranes for Vanadium Redox Flow Batteries. Polymers (Basel) 2022; 14:polym14081617. [PMID: 35458366 PMCID: PMC9026947 DOI: 10.3390/polym14081617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, vanadium redox flow batteries (VRFB) have captured immense attraction in electrochemical energy storage systems due to their long cycle life, flexibility, high-energy efficiency, time, and reliability. In VRFB, polymer membranes play a significant role in transporting protons for current transmission and act as barriers between positive and negative electrodes/electrolytes. Commercial polymer membranes (such as Nafion) are the widely used IEM in VRFBs due to their outstanding chemical stability and proton conductivity. However, the membrane cost and increased vanadium ions permeability limit its commercial application. Therefore, various modified perfluorinated and non-perfluorinated membranes have been developed. This comprehensive review primarily focuses on recent developments of hybrid polymer composite membranes with inorganic TiO2 nanofillers for VRFB applications. Hence, various fabrications are performed in the membrane with TiO2 to alter their physicochemical properties for attaining perfect IEM. Additionally, embedding the -SO3H groups by sulfonation on the nanofiller surface enhances membrane proton conductivity and mechanical strength. Incorporating TiO2 and modified TiO2 (sTiO2, and organic silica modified TiO2) into Nafion and other non-perfluorinated membranes (sPEEK and sPI) has effectively influenced the polymer membrane properties for better VRFB performances. This review provides an overall spotlight on the impact of TiO2-based nanofillers in polymer matrix for VRFB applications.
Collapse
|
4
|
Arunachalam M, Sinopoli A, Aidoudi F, Creager SE, Smith R, Merzougui B, Aïssa B. High Performance of Anion Exchange Blend Membranes Based on Novel Phosphonium Cation Polymers for All-Vanadium Redox Flow Battery Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45935-45943. [PMID: 34533936 DOI: 10.1021/acsami.1c10872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The deployment of alkaline anion exchange membranes (AEMs) in flow battery applications has the advantage of a low cationic species crossover rate. However, the alkaline stability conjugated to the low conductivity of hydroxide ions of anion exchange membranes (AEMs) still represents a major drawback for the large deployment of such technology. In this study, three types of tetraarylpolyphosphonium (pTAP)-based copolymers (namely, CP1, CP2, and CP3) are synthesized and blended with chitosan and polyvinylidene fluoride (PVDF) for the fabrication of AEMs. Chitosan, a green biopolymer, was employed as a blend to enhance the water uptake of the base ionomer matrix. It is proposed that the abundancy of hydroxyl groups in chitosan improves considerably the ionic conductivity, water transport, and ion selectivity of the membrane, together with facilitating the dispersion of the chitosan in the pTAP copolymer matrix. The purpose of blending PVDF is instead to provide stable mechanical strength to the composite blend. The chemical, mechanical, and thermal stabilities of the three fabricated composite-blend membranes (i.e., CM1, CM2, and CM3) were characterized. All the membranes exhibited a high water retaining capacity of up to 36.26% (recorded for CM2) along with a hydroxyl ion conductivity of 17.39 mS cm-1. Due to the strong interactions between pTAP copolymers, chitosan, and PVDF polymers (confirmed also by Fourier transform infrared spectroscopy), the studied anion exchange membranes are able to retain up to 97% of the original OH conductivity after 1 M KOH treatment at room temperature for 100 h. The three membranes, namely, CM1, CM2, and CM3, have vanadium ion permeabilities measured at 20 °C of 1.775 × 10-8, 1.718 × 10-8, and 1.648 × 10-8 cm2/s, respectively, which are lower than that for the commercially available Nafion. The good stability and remarkable cell performance of the composite-blend membranes reported here make them definitely excellent candidates for the future generation of vanadium redox flow batteries.
Collapse
Affiliation(s)
- Muthumeenal Arunachalam
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Alessandro Sinopoli
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Farida Aidoudi
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Stephen E Creager
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, 105 Sikes Hall, Clemson, South Carolina 29634, United States
| | - Rhett Smith
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, 105 Sikes Hall, Clemson, South Carolina 29634, United States
| | - Belabbes Merzougui
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Brahim Aïssa
- Qatar Environment & Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
5
|
Charyton M, Deboli F, Fischer P, Henrion G, Etienne M, Donten ML. Composite Anion Exchange Membranes Fabricated by Coating and UV Crosslinking of Low-Cost Precursors Tested in a Redox Flow Battery. Polymers (Basel) 2021; 13:polym13152396. [PMID: 34371998 PMCID: PMC8347460 DOI: 10.3390/polym13152396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/07/2023] Open
Abstract
This paper presents a novel, cost-effective approach to the fabrication of composite anion exchange membranes (AEMs). Hierarchical AEMs have been fabricated by coating a porous substrate with an interpenetrating polymer network (IPN) layer where poly(vinylpyrrolidone) (PVP) is immobilized in a crosslinked matrix. The IPN matrix was formed by UV initiated radical crosslinking of a mixture of acrylamide-based monomers and acrylic resins. The fabricated membranes have been compared with a commercial material (Fumatech FAP 450) in terms of ionic transport properties and performance in a vanadium redox flow battery (VRFB). Measures of area-specific resistance (ASR) and vanadium permeability for the proposed membranes demonstrated properties approaching the commercial benchmark. These properties could be tuned by changing the content of PVP in the IPN coating. Higher PVP/matrix ratios facilitate a higher water uptake of the coating layer and thus lower ASR (as low as 0.58 Ω.cm2). On the contrary, lower PVP/matrix ratios allow to reduce the water uptake of the coating and hence decrease the vanadium permeability at the cost of a higher ASR (as high as 1.99 Ω.cm2). In VRFB testing the hierarchical membranes enabled to reach energy efficiency comparable with the commercial AEM (PVP_14—74.7%, FAP 450—72.7% at 80 mA.cm−2).
Collapse
Affiliation(s)
- Martyna Charyton
- Amer-Sil S.A., 61 Rue D’Olm, Kehlen, 8281 Luxembourg, Luxembourg; (M.C.); (F.D.)
- CNRS, Institut Jean Lamour (IJL), Université de Lorraine, 2 Allée André Guinier, F-54011 Nancy, France;
- CNRS, Laboratory of Physical Chemistry and Microbiology for the Environment (LCPME), Université de Lorraine, 405 Rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France;
| | - Francesco Deboli
- Amer-Sil S.A., 61 Rue D’Olm, Kehlen, 8281 Luxembourg, Luxembourg; (M.C.); (F.D.)
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Peter Fischer
- Electrochemistry, Fraunhofer Institute for Chemical Technology ICT, Joseph-von-Fraunhofer, Straße 7, 76327 Pfinztal, Germany;
| | - Gerard Henrion
- CNRS, Institut Jean Lamour (IJL), Université de Lorraine, 2 Allée André Guinier, F-54011 Nancy, France;
| | - Mathieu Etienne
- CNRS, Laboratory of Physical Chemistry and Microbiology for the Environment (LCPME), Université de Lorraine, 405 Rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France;
| | - Mateusz L. Donten
- Amer-Sil S.A., 61 Rue D’Olm, Kehlen, 8281 Luxembourg, Luxembourg; (M.C.); (F.D.)
- Correspondence:
| |
Collapse
|