1
|
Zang J, Zhang L, Guo R, Kong L, Yu Y, Li S, Liu M, Wang J, Zhang Z, Li X, Liu Y. Baicalein loaded liposome with hyaluronic acid and Polyhexamethylene guanidine modification for anti methicillin-resistant Staphylococcus aureus infection. Int J Biol Macromol 2024; 276:133432. [PMID: 38936579 DOI: 10.1016/j.ijbiomac.2024.133432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Targeting delivery to the infection site and good affinity of vehicle to the bacterial are two main concerns in therapy of bacterial infection, and on-demand release of drug is another important issue. In this work, a liposome drug delivery system (HA/P/BAI-lip) incorporated with baicalein and modified by PHMG and HA was prepared. Several characterizations were conducted to examine the physical properties of liposome. Then it was applied to treatments of MRSA induced dorsal subcutaneous abscess model and the thigh muscle infected model. The presence of guanidine group in HA/P/BAI-lip rendered the liposome satisfactory bacterial target ability and good pH sensitive properties. The lipase secreted by bacterial could promote the hydrolysis of soybean phosphatidylcholine (SPC) in liposome. The modification of HA in HA/P/BAI-lip could lead the drug system to the exact infected site where CD44 was abundant because of inflammation. The low pH microenvironment characteristic of bacterial infection could induce the swelling of liposome following by degradation. Taken together, baicalein could be released selectively at the infected site to exert antibacterial capacity. HA/P/BAI-lip showed impressive antibacterial ability and dramatically decrease the bacterial burden of infection site and alleviate the infiltration of inflammatory cells, facilitating the recovery of infection.
Collapse
Affiliation(s)
- Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China
| | - Ruibo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China
| | - Shutong Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China
| | - Mo Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China
| | - Jiahua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China
| | - Zixu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China
| | - Xuetao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shengming 1 Road 77, Double D port, Dalian 116600, China.
| |
Collapse
|
2
|
Yuan Z, Yan R, Fu Z, Wu T, Ren C. Impact of physicochemical properties on biological effects of lipid nanoparticles: Are they completely safe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172240. [PMID: 38582114 DOI: 10.1016/j.scitotenv.2024.172240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Lipid nanoparticles (LNPs) are promising materials and human-use approved excipients, with manifold applications in biomedicine. Researchers have tended to focus on improving the pharmacological efficiency and organ targeting of LNPs, while paid relatively less attention to the negative aspects created by their specific physicochemical properties. Here, we discuss the impacts of LNPs' physicochemical properties (size, surface hydrophobicity, surface charge, surface modification and lipid composition) on the adsorption-transportation-distribution-clearance processes and bio-nano interactions. In addition, since there is a lack of review emphasizing on toxicological profiles of LNPs, this review outlined immunogenicity, inflammation, hemolytic toxicity, cytotoxicity and genotoxicity induced by LNPs and the underlying mechanisms, with the aim to understand the properties that underlie the biological effects of these materials. This provides a basic strategy that increased efficacy of medical application with minimized side-effects can be achieved by modulating the physicochemical properties of LNPs. Therefore, addressing the effects of physicochemical properties on toxicity induced by LNPs is critical for understanding their environmental and health risks and will help clear the way for LNPs-based drugs to eventually fulfill their promise as a highly effective therapeutic agents for diverse diseases in clinic.
Collapse
Affiliation(s)
- Ziyi Yuan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Ruyu Yan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Zuyi Fu
- College of Rehabilitation, Captital Medical University, Beijing, China
| | - Tao Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Chaoxiu Ren
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Huang J, Cao Y, Ding S. Preparation of grafted starch by IPDI coupling and its antibacterial properties. Biomaterials 2023; 301:122214. [PMID: 37406600 DOI: 10.1016/j.biomaterials.2023.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/23/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Antibacterial acetate grafted starch (AGS) was synthesized by isophorone diisocyanate (IPDI) coupling acetate esterified starch (AST) and the antimicrobial agent polyhexamethyleneguanidine hydrochloride (PHMG), and the antimicrobial properties of AGS were evaluated. The process parameters of AGS were: IPDI reacted with PHMG at 120 °C for 1 h, then, reacted with starch at 60 °C for 3 h. The grafting yield of PHMG and starch reached 28.43%. The Fourier transform infrared spectroscopy (FTIR) and Nuclear magnetic resonance (1H NMR) showed that the binding of IPDI to PHMG was successfully grafted on the AS. The antibacterial effect of AGS was investigated. AGS produced inhibition zones and confirmed its significant inhibitory effect on Escherichia coli and Staphylococcus aureus, as the grafting yield increased, the inhibition effect on bacteria became stronger. When the grafting yield was 28.43%, the inhibition rate of AGS was 90.24% for Escherichia coli. and 94.45% for Staphylococcus aureus. The experiments of water washing showed that after AGS was washed 10 times with water, the inhibition rate of AGS to E. coli. only reduced 3.04% and that of S. aureus 2.95%, indicating that the combination of PHMG and starch was stable and the inhibition effect was long-lasting, AGS has huge potential to be developed into antibacterial material.
Collapse
Affiliation(s)
- Jingao Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaqi Cao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shiyong Ding
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
4
|
Yang F, Wu C, Jiang Y, Tan L, Shu R. Development of an antibacterial polypropylene/polyurethane composite membrane for invisible orthodontics application. Front Bioeng Biotechnol 2023; 11:1233398. [PMID: 37485323 PMCID: PMC10361250 DOI: 10.3389/fbioe.2023.1233398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
In virtue of the advantages, such as aesthetics, designability, convenient removal, and comfortable experience, invisible orthodontics (IO) have been widely recognized and accepted by the public. However, most of the membranes currently used for IO only meet the requirement of shape retention. Other vital functions, like antibacterial and antifouling activities, are neglected. Herein, antibacterial composite membranes (ACMs) containing polypropylene (PP), thermoplastic polyurethane (TPU) and poly (hexamethylene guanidine) hydrochloride-sodium stearate (PHMG-SS) were facilely manufactured through the hot-pressing membrane forming technology. ACMs were conferred with favorable transparency (∼70% in the visible light range) and excellent antibacterial ability. Experiment results demonstrated that bactericidal rates of ACMs against Staphylococcus aureus, Escherichia coli and Streptococcus mutans were larger than 99.99%. Noticeably, the amount of protein adhered on the surface of ACMs was only 28.1 μg/cm2, showing ideal antifouling performance. Collectively, the mutifunctional ACMs in the study are expected to be prominent alternatives for existing IO.
Collapse
Affiliation(s)
- Feng Yang
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Polymer Materials Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Chenyi Wu
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuanzhang Jiang
- State Key Laboratory of Polymer Materials Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Lin Tan
- State Key Laboratory of Polymer Materials Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Developing an Effective and Durable Film for Marine Fouling Prevention from PDMS/SiO2 and PDMS/PU with SiO2 Composites. Polymers (Basel) 2022; 14:polym14204252. [PMID: 36297830 PMCID: PMC9611852 DOI: 10.3390/polym14204252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
Polymer film coating with a highly hydrophobic surface property is a practical approach to prevent fouling of any structures in the marine environment without affecting marine microorganisms. The preparation of a polymer coating, from a simple and easy method of solution blending of hydrophobic polydimethylsiloxane elastomer and hydrophilic polyurethane with SiO2, was carried out in this study, with the aim of improving characteristics, and the coating demonstrated economic feasibility for antifouling application. Incorporation of SiO2 particles into PDMS and PDMS/PU polymer film improved mechanical properties of the film and the support fabrication of micropatterns by means of a soft lithography process. Observations from field emission scanning electron microscope (FESEM) of the PDMS/SiO2 composite film revealed a homogeneous morphology and even dispersion of the SiO2 disperse phase between 1–5 wt.%. Moreover, the PDMS film with 3 wt.% loading of SiO2 considerably increased WCA to 115.7° ± 2.5° and improved mechanical properties by increasing Young’s modulus by 128%, compared with neat PDMS film. Additionally, bonding strength between barnacles and the PDMS film with 3 wt.% of SiO2 loading was 0.16 MPa, which was much lower than the bonding strength between barnacles and the reference carbon steel of 1.16 MPa. When compared to the previous study using PDMS/PU blend (95:5), the count of barnacles of PDMS with 3 wt.% SiO2 loading was lower by 77% in the two-week field tests and up to 97% in the eight-week field tests. Subsequently, when PDMS with 3 wt.% SiO2 was further blended with PU, and the surface modified by the soft lithography process, it was found that PDMS/PU (95:5) with 3 wt.% SiO2 composite film with micropatterns increased WCA to 122.1° ± 2.9° and OCA 90.8 ± 3.6°, suggesting that the PDMS/PU (95:5) with 3 wt.% SiO2 composite film with surface modified by the soft lithography process could be employed for antifouling application.
Collapse
|
6
|
Zhu J, Yuan H, Zhang S, Hao X, Lan M. Construction of antifouling and antibacterial polyhexamethylguanidine/chondroitin sulfate coating on polyurethane surface based on polydopamine rapid deposition. J Appl Polym Sci 2022. [DOI: 10.1002/app.53009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiaqian Zhu
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Huihui Yuan
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Shunqi Zhang
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Xiang Hao
- School of Physical Science and Technology Suzhou University of Science and Technology Suzhou China
| | - Minbo Lan
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
7
|
Wang H, Zhang L, Chen R, Liu Super vision Q, Liu J, Yu J, Liu P, Duan J, Wang J. Surface Morphology Properties and Antifouling Activity of Bi2WO6/Boron-grafted Polyurethane Composite Coatings Realized via Multiple Synergy. J Colloid Interface Sci 2022; 626:815-823. [DOI: 10.1016/j.jcis.2022.06.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 10/31/2022]
|