1
|
Zhang Z, Yang J, Qi R, Huang J, Chen H, Zhang H. Development of Hydrophobic Coal-Fly-Ash-Based Ceramic Membrane for Vacuum Membrane Distillation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3153. [PMID: 37109989 PMCID: PMC10141027 DOI: 10.3390/ma16083153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Membrane distillation is an emerging separation technology with a high separation factor in water desalination. Ceramic membranes are increasingly used in membrane distillation because of high thermal and chemical stabilities. Coal fly ash is a promising ceramic membrane material with low thermal conductivity. In this study, three hydrophobic coal-fly-ash-based ceramic membranes were prepared for saline water desalination. The performances of different membranes in membrane distillation were compared. The effects of membrane pore size on permeate flux and salt rejection were researched. The coal-fly-ash-based membrane showed both a higher permeate flux and a higher salt rejection than the alumina membrane. As a result, using coal fly ash as the material for membrane fabrication can effectively increase the performance when applied to MD. Increasing the membrane pore size improved the permeate flux, but reduced the salt rejection. When the mean pore size increased from 0.15 μm to 1.57 μm, the water flux rose from 5.15 L·m-2·h-1 to 19.72 L·m-2·h-1, but the initial salt rejection was reduced from 99.95% to 99.87%. The hydrophobic coal-fly-ash-based membrane with a mean pore size of 0.18 μm exhibited a water flux of 9.54 L·m-2·h-1 and a salt rejection of higher than 98.36% in membrane distillation.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
| | - Jihao Yang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
| | - Run Qi
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
| | - Jiguang Huang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
| | - Haiping Chen
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
- Beijing Key Laboratory of Pollutant Monitoring and Control in Thermoelectric Production Process, North China Electric Power University, Beijing 102206, China
| | - Heng Zhang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; (Z.Z.); (J.Y.); (R.Q.); (J.H.); (H.C.)
- Beijing Key Laboratory of Pollutant Monitoring and Control in Thermoelectric Production Process, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
2
|
Piash KS, Sanyal O. Design Strategies for Forward Osmosis Membrane Substrates with Low Structural Parameters-A Review. MEMBRANES 2023; 13:73. [PMID: 36676880 PMCID: PMC9865366 DOI: 10.3390/membranes13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
This article reviews the many innovative strategies that have been developed to specifically design the support layers of forward osmosis (FO) membranes. Forward osmosis (FO) is one of the most viable separation technologies to treat hypersaline wastewater, but its successful deployment requires the development of new membrane materials beyond existing desalination membranes. Specifically, designing the FO membrane support layers requires new engineering techniques to minimize the internal concentration polarization (ICP) effects encountered in cases of FO. In this paper, we have reviewed several such techniques developed by different research groups and summarized the membrane transport properties corresponding to each approach. An important transport parameter that helps to compare the various approaches is the so-called structural parameter (S-value); a low S-value typically corresponds to low ICP. Strategies such as electrospinning, solvent casting, and hollow fiber spinning, have been developed by prior researchers-all of them aimed at lowering this S-value. We also reviewed the quantitative methods described in the literature, to evaluate the separation properties of FO membranes. Lastly, we have highlighted some key research gaps, and provided suggestions for potential strategies that researchers could adopt to enable easy comparison of FO membranes.
Collapse
|
3
|
Wang F, Liu J, Li D, Liu Z, Zhang J, Ding P, Liu G, Feng Y. High-Efficiency Water Recovery from Urine by Vacuum Membrane Distillation for Space Applications: Water Quality Improvement and Operation Stability. MEMBRANES 2022; 12:629. [PMID: 35736336 PMCID: PMC9230999 DOI: 10.3390/membranes12060629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023]
Abstract
Water recovery by membrane distillation (MD) is an attractive alternative to existing urine treatment systems because it could improve the water recovery rate and reliability in space missions. However, there are few studies of urine MD, particularly on the removal of the remaining contaminants from distillate water and the assessment of its long-term performance. In this study, the influences of various operation parameters on distillate water quality and operation stability were investigated in batch mode. The low pH of feedstock reduced the conductivity and total ammonium nitrogen (TAN) in distillate water because the low pH promoted the ionization of ammonia to ammonium ions. However, the low pH also facilitated the formation of free chlorine hydride, which resulted in the minor deterioration of the conductivity in the distillate due to the increasing volatility of chlorine hydride in the feedstock. Thirty batches of vacuum membrane distillation (VMD) experiments demonstrated that the permeate flux and the distillate water quality slightly decreased due to the small range of membrane wetting but still maintained an over 94.2% and 95.8% removal efficiency of the total organic carbon (TOC) and TAN, and the conductivity was <125 μs cm−1 in the distillate water after 30 test batches. VMD is a feasible option for urine treatment in space missions.
Collapse
Affiliation(s)
- Fei Wang
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China;
| | - Junfeng Liu
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
| | - Da Li
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
| | - Zheng Liu
- The Institute of Seawater Desalination and Multipurpose Utilization, MNR (Tianjin), Tianjin 300192, China; (Z.L.); (G.L.)
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
| | - Ping Ding
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China;
| | - Guochang Liu
- The Institute of Seawater Desalination and Multipurpose Utilization, MNR (Tianjin), Tianjin 300192, China; (Z.L.); (G.L.)
| | - Yujie Feng
- School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China; (F.W.); (J.L.); (D.L.); (J.Z.)
| |
Collapse
|
4
|
Multi-Scale Study of the Small-Strain Damping Ratio of Fiber-Sand Composites. Polymers (Basel) 2021; 13:polym13152476. [PMID: 34372079 PMCID: PMC8347992 DOI: 10.3390/polym13152476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
The use of polypropylene fibers as a geosynthetic in infrastructures is a promising ground treatment method with applications in the enhancement of the bearing capacity of foundations, slope rehabilitation, strengthening of backfills, as well as the improvement of the seismic behavior of geo-systems. Despite the large number of studies published in the literature investigating the properties of fiber-reinforced soils, less attention has been given in the evaluation of the dynamic properties of these composites, especially in examining damping characteristics and the influence of fiber inclusion and content. In the present study, the effect of polypropylene fiber inclusion on the small-strain damping ratio of sands with different gradations and various particle shapes was investigated through resonant column (macroscopic) experiments. The macroscopic test results suggested that the damping ratio of the mixtures tended to increase with increasing fiber content. Accordingly, a new expression was proposed which considers the influence of fiber content in the estimation of the small-strain damping of polypropylene fiber-sand mixtures and it can be complementary of damping modeling from small-to-medium strains based on previously developed expressions in the regime of medium strains. Additional insights were attempted to be obtained on the energy dissipation and contribution of fibers of these composite materials by performing grain-scale tests which further supported the macroscopic experimental test results. It was also attempted to interpret, based on the grain-scale tests results, the influence of fiber inclusion in a wide spectrum of properties for fiber-reinforced sands providing some general inferences on the contribution of polypropylene fibers on the constitutive behavior of granular materials.
Collapse
|
5
|
Bulejko P, Krištof O, Dohnal M. An Assessment on Average Pressure Drop and Dust-Holding Capacity of Hollow-Fiber Membranes in Air Filtration. MEMBRANES 2021; 11:467. [PMID: 34202790 PMCID: PMC8306576 DOI: 10.3390/membranes11070467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
In this work, we tried to analyze dust loading behavior of polypropylene hollow fiber membranes using average pressure drop models. Hollow fiber membranes varying in fiber diameter were loaded with a standardized test dust to simulate particle-polluted air. We measured pressure drop development of the membranes at different flowrates and dust concentrations, and, after each experiment, the dust deposited on the membrane fibers was weighed to obtain dust holding capacity (DHC). The obtained experimental data was analyzed using various average pressure drop models and compared with average pressure drop obtained from pressure drop/dust load dependence using a curve fit. Exponential and polynomial fitting was used and compared. Pressure drop in relation to the dust load followed different trends depending on the experimental conditions and inner fiber diameter. At higher flowrate, the dependence was polynomial no matter what the fiber diameter. However, with higher fiber diameter at lower permeate velocities, the dependence was close to exponential curve and followed similar trends as observed in planar filter media. Dust-holding capacity of the membranes depended on the experimental conditions and was up to 21.4 g. However, higher dust holding capacity was impossible to reach no matter the experiment duration due to self-cleaning ability of the tested membranes.
Collapse
Affiliation(s)
- Pavel Bulejko
- Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, 61669 Brno, Czech Republic
| | - Ondřej Krištof
- ZENA Membranes s.r.o., 62100 Brno, Czech Republic; (O.K.); (M.D.)
| | - Miroslav Dohnal
- ZENA Membranes s.r.o., 62100 Brno, Czech Republic; (O.K.); (M.D.)
| |
Collapse
|