1
|
Zin I, China A, Khan K, Nag JK, Vasu K, Deshpande GM, Ghosh PK, Khan D, Ramachandiran I, Ganguly S, Tamagno I, Willard B, Gogonea V, Fox PL. AKT-dependent nuclear localization of EPRS1 activates PARP1 in breast cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2303642121. [PMID: 39012819 PMCID: PMC11287164 DOI: 10.1073/pnas.2303642121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis. Here, we show EPRS1 is present in both cytoplasm and nucleus of breast cancer cells with constitutively low phosphatase and tensin homolog (PTEN) expression. EPRS1 is primarily cytosolic in PTEN-expressing cells, but chemical or genetic inhibition of PTEN, or chemical or stress-mediated activation of its target, AKT, induces EPRS1 nuclear localization. Likewise, preferential nuclear localization of EPRS1 was observed in invasive ductal carcinoma that were also P-Ser473-AKT+. EPRS1 nuclear transport requires a nuclear localization signal (NLS) within the linker region that joins the catalytic glutamyl-tRNA synthetase and prolyl-tRNA synthetase domains. Nuclear EPRS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1), a DNA-damage sensor that directs poly(ADP-ribosyl)ation (PARylation) of proteins. EPRS1 is a critical regulator of PARP1 activity as shown by markedly reduced ADP-ribosylation in EPRS1 knockdown cells. Moreover, EPRS1 and PARP1 knockdown comparably alter the expression of multiple tumor-related genes, inhibit DNA-damage repair, reduce tumor cell survival, and diminish tumor sphere formation by breast cancer cells. EPRS1-mediated regulation of PARP1 activity provides a mechanistic link between PTEN loss in breast cancer cells, PARP1 activation, and cell survival and tumor growth. Targeting the noncanonical activity of EPRS1, without inhibiting canonical tRNA ligase activity, provides a therapeutic approach potentially supplementing existing PARP1 inhibitors.
Collapse
Affiliation(s)
- Isaac Zin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Department of Chemistry, Cleveland State University, Cleveland, OH44115
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Department of Life Sciences, School of Science, Gandhi Institute of Technology and Management, Bengaluru562163, India
| | - Jeetendra K. Nag
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | | | - Prabar K. Ghosh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Shinjini Ganguly
- Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Ilaria Tamagno
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH44115
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Department of Chemistry, Cleveland State University, Cleveland, OH44115
| |
Collapse
|
2
|
Tijaro-Bulla S, Nyandwi SP, Cui H. Physiological and engineered tRNA aminoacylation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1789. [PMID: 37042417 DOI: 10.1002/wrna.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Aminoacyl-tRNA synthetases form the protein family that controls the interpretation of the genetic code, with tRNA aminoacylation being the key chemical step during which an amino acid is assigned to a corresponding sequence of nucleic acids. In consequence, aminoacyl-tRNA synthetases have been studied in their physiological context, in disease states, and as tools for synthetic biology to enable the expansion of the genetic code. Here, we review the fundamentals of aminoacyl-tRNA synthetase biology and classification, with a focus on mammalian cytoplasmic enzymes. We compile evidence that the localization of aminoacyl-tRNA synthetases can be critical in health and disease. In addition, we discuss evidence from synthetic biology which made use of the importance of subcellular localization for efficient manipulation of the protein synthesis machinery. This article is categorized under: RNA Processing Translation > Translation Regulation RNA Processing > tRNA Processing RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
| | | | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Akbari M, Ebrahimi Tapeh Z, Zaersabet M, Rahimi H, Ganji M. Novel pyrroline-5-carboxylate reductase 2 (PYCR2) mutation in an Iranian patient with hypomyelinating leukodystrophy: findings of molecular and in silico investigations. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
Background
Hypomyelinating leukodystrophy (HLD) is a specific group of leukodystrophies and is characterized by progressive postnatal growth delay that represents a type of clinically overlapping but genetically heterogeneous diseases with autosomal recessive inheritance. Loss-of-function mutations in PYCR2 are one of the main causes of HLD type 10 (HLD10), which is identified by cerebral hypomyelination, inadequate growth, brain atrophy, and movement abnormality. This study aimed to investigate the molecular etiology of HLD10 disorder in an Iranian patient from a consanguineous marriage family.
Results
The DNA samples were extracted from the patient, a 9-year-old girl, and her parents. Whole-exome sequencing was conducted for these samples and the results were eventually confirmed and segregated via Sanger sequencing. Our findings demonstrated a novel homozygous frameshift mutation in PYCR2 gene, c.135dup (NM_013328.4). The heterozygous state of this variant was confirmed in parents. Additionally, this mutation was predicted to exhibit damaging effects through protein sequence alteration.
Conclusions
Such findings are of importance for understanding the underlying pathogenicity mechanisms and for improving genetic counseling knowledge of HLD patients for families.
Collapse
|
4
|
Memezawa S, Sato T, Ochiai A, Fukawa M, Sawaguchi S, Sango K, Miyamoto Y, Yamauchi J. The Antiepileptic Valproic Acid Ameliorates Charcot-Marie-Tooth 2W (CMT2W) Disease-Associated HARS1 Mutation-Induced Inhibition of Neuronal Cell Morphological Differentiation Through c-Jun N-terminal Kinase. Neurochem Res 2022; 47:2684-2702. [PMID: 35380399 DOI: 10.1007/s11064-022-03587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022]
Abstract
Hereditary peripheral neuropathies called Charcot-Marie-Tooth (CMT) disease affect the sensory nerves as well as motor neurons. CMT diseases are composed of a heterogeneous group of diseases. They are characterized by symptoms such as muscle weakness and wasting. Type 2 CMT (CMT2) disease is a neuropathy with blunted or disrupted neuronal morphological differentiation phenotypes including process formation of peripheral neuronal axons. In the early stages of CMT2, demyelination that occurs in Schwann cells (glial cells) is rarely observed. CMT2W is an autosomal-dominant disease and is responsible for the gene encoding histidyl-tRNA synthetase 1 (HARS1), which is a family molecule of cytoplasmic aminoacyl-tRNA synthetases and functions by ligating histidine to its cognate tRNA. Despite increasing knowledge of the relationship of mutations on responsible genes with diseases, it still remains unclear how each mutation affects neuronal differentiation. Here we show that in neuronal N1E-115 cells, a severe Asp364-to-Tyr (D364Y) mutation of HARS1 leads to formation of small aggregates of HARS1 proteins; in contrast, wild type proteins are distributed throughout cell bodies. Expression of D364Y mutant proteins inhibited process formation whereas expression of wild type proteins possessed the normal differentiation ability to grow processes. Pretreatment with the antiepileptic valproic acid recovered inhibition of process formation by D364Y mutant proteins through the c-Jun N-terminal kinase signaling pathway. Taken together, these results indicate that the D364Y mutation of HARS1 causes HARS1 proteins to form small aggregates, inhibiting process growth, and that these effects are recovered by valproic acid. This could be a potential therapeutic drug for CMT2W at the cellular levels.
Collapse
Affiliation(s)
- Shiori Memezawa
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takanari Sato
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Arisa Ochiai
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Miku Fukawa
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Sui Sawaguchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan. .,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
5
|
Sawaguchi S, Suzuki R, Oizumi H, Ohbuchi K, Mizoguchi K, Yamamoto M, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 8 (HLD8)-Associated Mutation of POLR3B Leads to Defective Oligodendroglial Morphological Differentiation Whose Effect Is Reversed by Ibuprofen. Neurol Int 2022; 14:212-244. [PMID: 35225888 PMCID: PMC8884015 DOI: 10.3390/neurolint14010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
POLR3B and POLR3A are the major subunits of RNA polymerase III, which synthesizes non-coding RNAs such as tRNAs and rRNAs. Nucleotide mutations of the RNA polymerase 3 subunit b (polr3b) gene are responsible for hypomyelinating leukodystrophy 8 (HLD8), which is an autosomal recessive oligodendroglial cell disease. Despite the important association between POLR3B mutation and HLD8, it remains unclear how mutated POLR3B proteins cause oligodendroglial cell abnormalities. Herein, we show that a severe HLD8-associated nonsense mutation (Arg550-to-Ter (R550X)) primarily localizes POLR3B proteins as protein aggregates into lysosomes in the FBD-102b cell line as an oligodendroglial precursor cell model. Conversely, wild type POLR3B proteins were not localized in lysosomes. Additionally, the expression of proteins with the R550X mutation in cells decreased lysosome-related signaling through the mechanistic target of rapamycin (mTOR). Cells harboring the mutant constructs did not exhibit oligodendroglial cell differentiated phenotypes, which have widespread membranes that extend from their cell body. However, cells harboring the wild type constructs exhibited differentiated phenotypes. Ibuprofen, which is a non-steroidal anti-inflammatory drug (NSAID), improved the defects in their differentiation phenotypes and signaling through mTOR. These results indicate that the HLD8-associated POLR3B proteins with the R550X mutation are localized in lysosomes, decrease mTOR signaling, and inhibit oligodendroglial cell morphological differentiation, and ibuprofen improves these cellular pathological effects. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD8 and their amelioration.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Rimi Suzuki
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
6
|
Sawaguchi S, Tago K, Oizumi H, Ohbuchi K, Yamamoto M, Mizoguchi K, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 7 (HLD7)-Associated Mutation of POLR3A Is Related to Defective Oligodendroglial Cell Differentiation, Which Is Ameliorated by Ibuprofen. Neurol Int 2021; 14:11-33. [PMID: 35076634 PMCID: PMC8788570 DOI: 10.3390/neurolint14010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/13/2023] Open
Abstract
Hypomyelinating leukodystrophy 7 (HLD7) is an autosomal recessive oligodendroglial cell-related myelin disease, which is associated with some nucleotide mutations of the RNA polymerase 3 subunit a (polr3a) gene. POLR3A is composed of the catalytic core of RNA polymerase III synthesizing non-coding RNAs, such as rRNA and tRNA. Here, we show that an HLD7-associated nonsense mutation of Arg140-to-Ter (R140X) primarily localizes POLR3A proteins as protein aggregates into lysosomes in mouse oligodendroglial FBD-102b cells, whereas the wild type proteins are not localized in lysosomes. Expression of the R140X mutant proteins, but not the wild type proteins, in cells decreased signaling through the mechanistic target of rapamycin (mTOR), controlling signal transduction around lysosomes. While cells harboring the wild type constructs exhibited phenotypes with widespread membranes with myelin marker protein expression following the induction of differentiation, cells harboring the R140X mutant constructs did not exhibit them. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), which is also known as an mTOR signaling activator, ameliorated defects in differentiation with myelin marker protein expression and the related signaling in cells harboring the R140X mutant constructs. Collectively, HLD7-associated POLR3A mutant proteins are localized in lysosomes where they decrease mTOR signaling, inhibiting cell morphological differentiation. Importantly, ibuprofen reverses undifferentiated phenotypes. These findings may reveal some of the pathological mechanisms underlying HLD7 and their amelioration at the molecular and cellular levels.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
| | - Kenji Tago
- Department of Biochemistry, Jichi Medical University, Shimotsuke 321-0498, Japan;
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
7
|
Knockdown of Golgi Stress-Responsive Caspase-2 Ameliorates HLD17-Associated AIMP2 Mutant-Mediated Inhibition of Oligodendroglial Cell Morphological Differentiation. Neurochem Res 2021; 47:2617-2631. [PMID: 34523057 DOI: 10.1007/s11064-021-03451-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Hypomyelinating leukodystrophy 17 is an autosomal recessive disease affecting myelin-forming oligodendroglial cells in the central nervous system. The gene responsible for HLD17 encodes aminoacyl-tRNA synthase complex-interacting multifunctional protein 2, whose product proteins form a scaffold that supports aminoacyl-tRNA synthetases throughout the cell body. Here we show that the HLD17-associated nonsense mutation (Tyr35-to-Ter [Y35X]) of AIMP2 localizes AIMP2 proteins as aggregates into the Golgi bodies in mouse oligodendroglial FBD-102b cells. Wild type AIMP2 proteins, in contrast, are distributed throughout the cell body. Expression of the Y35X mutant proteins, but not the wild type proteins, in cells upregulates Golgi stress signaling involving caspase-2 activation. Cells expressing the wild type proteins exhibit differentiated phenotypes with web-like structures bearing many processes following the induction of differentiation, whereas cells expressing the Y35X mutant proteins fail to differentiate. Furthermore, CASP2 knockdown but not control knockdown reverses the phenotypes of cells expressing the mutant proteins. These results suggest that HLD17-associated AIMP2 mutant proteins are localized in the Golgi bodies where their proteins stimulate Golgi stress-responsive CASP2 to inhibit differentiation; this effect is ameliorated by knockdown of CASP2. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD17 and possible approaches to ameliorating the disease's effects.
Collapse
|