1
|
Ghorpade VS, Mali KK, Dias RJ, Dhawale SC, Digole RR, Gandhi JM, Bobde KA, Mali RK. Citric acid crosslinked hydroxyethyl tamarind gum-based hydrogel films: A promising biomaterial for drug delivery. Int J Biol Macromol 2024; 282:137127. [PMID: 39486708 DOI: 10.1016/j.ijbiomac.2024.137127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/22/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
This investigation explored citric acid crosslinked hydroxyethyl tamarind gum hydrogel films as a potential biomaterial for drug delivery. Hydroxyethylation of tamarind gum aimed to improve its solubility, swelling, and crosslinking potential. The synthesized hydroxyethylated tamarind gum (HETG) was comprehensively characterized, revealing the presence of hydroxyethyl groups and increased viscosity in comparison to unmodified tamarind gum. The citric acid crosslinked HETG hydrogel films were developed by esterification-crosslinking mechanism. The films were characterized using instrumental techniques and evaluated for total carboxyl content, mechanical properties, swelling behavior, drug loading, drug release, antibacterial activity, hemocompatibility and in vitro wound healing activity. The presence of ester crosslinks and extent of crosslinking was confirmed through total carboxyl content and instrumental analysis. Varying HETG (2-2.5%w/v) and citric acid (1-1.4 %w/v) concentrations resulted in films with tunable mechanical strength, swelling, and drug loading. The films effectively controlled the release of a water-soluble drug (80.87-99.70 % in 24 h) through a non-Fickian diffusion mechanism. The optimized HETG hydrogel film showed antimicrobial activity, hemocompatibility, and support for cell growth, confirming its biocompatibility and potential for wound healing. Citric acid-crosslinked HETG films appear promising for drug delivery to wounds, meriting further in vivo study.
Collapse
Affiliation(s)
- Vishwajeet Sampatrao Ghorpade
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad 415539, Maharashtra, India
| | - Kailas Krishnat Mali
- Department of Pharmaceutics, Adarsh College of Pharmacy, Vita A/p - 421/2, Near MIDC, Khambale (Bha.), Vita Tal-Khanapur 415311 Dist-Sangli, Maharashtra, India.
| | - Remeth Jacky Dias
- Department of Pharmacy, Government College of Pharmacy, Vidyanagar, Karad 415124, Tal-Satara, Maharashtra, India
| | - Shashikant Chhaburao Dhawale
- Department of Pharmacology, School of Pharmacy, Swami Ramanand Teerth Marathwada University, Nanded 431606, India
| | - Rohit Ramesh Digole
- Department of Pharmaceutics, Adarsh College of Pharmacy, Vita A/p - 421/2, Near MIDC, Khambale (Bha.), Vita Tal-Khanapur 415311 Dist-Sangli, Maharashtra, India
| | - Jotsna Mohanlal Gandhi
- Department of Pharmacognosy, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad 415539, Maharashtra, India
| | - Kiran Ashok Bobde
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad 415539, Maharashtra, India
| | - Rahul Krishnat Mali
- Lotus Pharmaceutical Co., Ltd., Sinsing Village, Nantou City, Nantou County 54066, Taiwan, ROC
| |
Collapse
|
2
|
Papaioannou A, Vasilaki E, Loukelis K, Papadogianni D, Chatzinikolaidou M, Vamvakaki M. Bioactive and biomimetic 3D scaffolds for bone tissue engineering using graphitic carbon nitride as a sustainable visible light photoinitiator. BIOMATERIALS ADVANCES 2024; 157:213737. [PMID: 38211506 DOI: 10.1016/j.bioadv.2023.213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is explored as a novel sustainable visible light photoinitiator for the preparation of biomimetic 3D hydrogel scaffolds comprising gelatin methacrylamide (GelMA) and dopamine methacrylamide for use in tissue engineering. The initiator efficiency was assessed by comparing the swelling behavior and the stability of photopolymerized hydrogels prepared with GelMA of different degrees of functionalization and different comonomer compositions. Bioactive composite hydrogels with a 50 wt% nanohydroxyapatite (nHAp) content, to closely mimic the actual bone composition, were successfully obtained by the introduction of nHAp in the prepolymer solutions followed by photopolymerization. The composite hydrogels demonstrated enhanced mechanical properties and excellent stability in PBS verifying the preparation of robust 3D scaffolds for use in cancellous or pre-calcified bone tissue engineering applications. The in vitro cell response of the composite scaffolds exhibited high cell viability and enhanced differentiation of pre-osteoblasts to mature osteoblasts, demonstrating their osteogenic potential. This work establishes, for the first time, the excellent properties of g-C3N4 as a sustainable, visible light initiator, fully satisfying the principles of green chemistry, for the preparation of robust and biologically relevant hydrogels, and proposes a new approach to overcome the main challenges of conventional photoinitiators in cell scaffold fabrication, such as photobleaching, high cost and non-scalable synthesis employing toxic organic precursors and solvents.
Collapse
Affiliation(s)
- Anna Papaioannou
- School of Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Evangelia Vasilaki
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece.
| | - Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Danai Papadogianni
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Department of Materials Science and Technology, University of Crete, 700 13 Heraklion, Greece; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 700 13 Heraklion, Crete, Greece.
| |
Collapse
|
3
|
Aizamddin M, Mahat MM. Enhancing the Washing Durability and Electrical Longevity of Conductive Polyaniline-Grafted Polyester Fabrics. ACS OMEGA 2023; 8:37936-37947. [PMID: 37867689 PMCID: PMC10586257 DOI: 10.1021/acsomega.3c03377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 10/24/2023]
Abstract
The demand for wearable electronics has driven the development of conductive fabrics, particularly those incorporating polyaniline (PANI) that is known for its high electrical conductivity, flexibility, and ease of fabrication. However, the limited stability and durability of the conductive fabric, especially during washing, present significant challenges. The drawbacks can be traced by weak physical attachment between the fabric and the conductive coating, leading to a decrease in conductivity over time. These drawbacks significantly impact the fabric's functionality and performance, highlighting the need for effective solutions to enhance its stability and durability. This study focuses on addressing these challenges by employing a thermochemical treatment. A hydrophilic surface of the polyester fabric is obtained after the treatment (hydrolysis), followed by grafting of PANI on it. The adhesion between PANI and the polyester fabrics was found to be enhanced, as proved by contact angle analysis. Furthermore, the PANI-hydrolyzed fabrics (treated) demonstrated stable conductivity (∼10-3 S cm-3) even after 10 washing cycles, showcasing their excellent durability. In comparison, the unhydrolyzed PANI fabric experienced a drop in conductivity by three orders of magnitude. X-ray photoelectron spectroscopy via N 1s core line spectra showed chemical shifts and quantified the level of doping through PANI's protonation level. We found that PANI-hydrolyzed fabrics preserved their dedoping level from 44.77 to 42.68%, indicating improved stability and extension of their electrical properties' lifetime after washing as compared to unhydrolyzed (untreated) fabrics, from 36.99 to 26.61%. This investigation demonstrates that the thermochemical approach can effectively enhance the durability of conductive PANI fabrics, enabling them to withstand the washing process while preserving their electrical endurance.
Collapse
Affiliation(s)
- Muhammad
Faiz Aizamddin
- School
of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
| | - Mohd Muzamir Mahat
- School
of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
- Textile
Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
| |
Collapse
|
4
|
Cichoń K, Bak-Sypien II, Basko M, Kost B. Synthesis and Characterization of Functionalized Polylactides Containing Acetal Units. Macromolecules 2023; 56:6951-6967. [PMID: 37720563 PMCID: PMC10501204 DOI: 10.1021/acs.macromol.3c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Indexed: 09/19/2023]
Abstract
New functionalized lactide copolymers containing acetal units were prepared for the first time in a controlled manner that enabled the regulation of the number of reactive groups introduced into the polyester chain. The presence of functional groups in the copolymer backbone provided chemical modification sites, and the nature of the acetal unit affected the material degradability. First, paraformaldehyde was reacted with selected diols containing reactive pendant groups (3-allyloxypropane-1,2-diol and 3-chloropropane-1,2-diol), which was catalyzed by p-toluenesulfonic acid, to synthesize new cyclic acetals with different functionalities (allyl- or chloro-). In addition, using butane-1,4-diol, a nonfunctionalized seven-membered cyclic acetal (dioxepane) was obtained for comparative studies. In the next step, the prepared cyclic acetals were used for cationic copolymerization with lactide in the presence of glycol as an initiator and triflic acid as a catalyst. Different temperatures (-15, 2, and 30 °C) and copolymerization times (24, 48, 72, and 192 h) were investigated to produce copolyesters with variable contents of acetal units in the range of 5-27%. The copolymers' structure and molar masses were carefully investigated using 1H, 13C NMR, 2D NMR, and size-exclusion chromatography. Moreover, the ability of functionalized copolymers to perform post modifications was also proven by the reaction with sodium azide and propanethiol. Finally, we speculate that structurally diverse groups can be attached to the copolyester chain, fine-tuning the on-demand properties, which could rapidly expand the library of polylactide-based materials.
Collapse
Affiliation(s)
- Karolina Cichoń
- Centre of Molecular and Macromolecular
Studies Polish Academy of Sciences Sienkiewicza 112, 90-363 Lodz, Poland
| | - Irena I. Bak-Sypien
- Centre of Molecular and Macromolecular
Studies Polish Academy of Sciences Sienkiewicza 112, 90-363 Lodz, Poland
| | - Malgorzata Basko
- Centre of Molecular and Macromolecular
Studies Polish Academy of Sciences Sienkiewicza 112, 90-363 Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular
Studies Polish Academy of Sciences Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
5
|
Special Issue "State-of-the-Art Polymer Science and Technology in Greece". Polymers (Basel) 2023; 15:polym15051264. [PMID: 36904504 PMCID: PMC10007002 DOI: 10.3390/polym15051264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Polymer science and technology is an active and continuously developing field of research and innovation in Greece [...].
Collapse
|
6
|
Socci MC, Rodríguez G, Oliva E, Fushimi S, Takabatake K, Nagatsuka H, Felice CJ, Rodríguez AP. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering (Basel) 2023; 10:bioengineering10020218. [PMID: 36829712 PMCID: PMC9952269 DOI: 10.3390/bioengineering10020218] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Tissue Engineering (TE) is an interdisciplinary field that encompasses materials science in combination with biological and engineering sciences. In recent years, an increase in the demand for therapeutic strategies for improving quality of life has necessitated innovative approaches to designing intelligent biomaterials aimed at the regeneration of tissues and organs. Polymeric porous scaffolds play a critical role in TE strategies for providing a favorable environment for tissue restoration and establishing the interaction of the biomaterial with cells and inducing substances. This article reviewed the various polymeric scaffold materials and their production techniques, as well as the basic elements and principles of TE. Several interesting strategies in eight main TE application areas of epithelial, bone, uterine, vascular, nerve, cartilaginous, cardiac, and urinary tissue were included with the aim of learning about current approaches in TE. Different polymer-based medical devices approved for use in clinical trials and a wide variety of polymeric biomaterials are currently available as commercial products. However, there still are obstacles that limit the clinical translation of TE implants for use wide in humans, and much research work is still needed in the field of regenerative medicine.
Collapse
Affiliation(s)
- María Cecilia Socci
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| | - Gabriela Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Emilia Oliva
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral Pathology and Medicine, Okayama University Dental School, Okayama 700-8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Andrea Paola Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| |
Collapse
|
7
|
Pires J, Costa SA, da Silva KP, da Conceição AGB, Reis ÉDM, Sinhorin AP, Branco CLB, Cruz L, Ferrarini SR, Andrade CMB. Artemether-loaded polymeric lipid-core nanocapsules reduce cell viability and alter the antioxidant status of U-87 MG cells. Pharm Dev Technol 2022; 27:892-903. [PMID: 36168940 DOI: 10.1080/10837450.2022.2128819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Glioblastomas are tumors that present a high mortality rate. Artemether (ART) is a lactone with antitumor properties, demonstrating low bioavailability and water solubility. In the present study, we developed lipid-core nanocapsules (LNC) containing pequi oil (Caryocar brasiliense Cambess) as the oily core for ART-loaded LNCs (LNCART) and evaluated their effect on human glioblastoma cells (U-87 MG). LNCs were developed by interfacial deposition of a preformed polymer, followed by physicochemical characterization. LNCART revealed a diameter of 0.216 µm, polydispersity index of 0.161, zeta potential of -12.0 mV, and a pH of 5.53. Furthermore, mitochondrial viability, proliferation, total antioxidant status, and antioxidant enzyme activity were evaluated. ART reduced cell viability after 24 h and proliferation after 48 h of treatment at concentrations equal to or above 40 µg . mL-1. LNCART, at 1.25 µg . mL-1, reduced these parameters after 24 h of treatment. Furthermore, superoxide dismutase (SOD) activity was elevated, while glutathione reductase (GR) activity was reduced. These findings suggest that ART loaded into LNC may be a promising alternative to improve its pharmacological action and possible application as a therapeutic agent for glioblastoma.
Collapse
Affiliation(s)
- Jader Pires
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Suéllen Alves Costa
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Karoline Paiva da Silva
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | | | - Érica de Melo Reis
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Adilson Paulo Sinhorin
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Carmen Lucia Bassi Branco
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Letícia Cruz
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Stela Regina Ferrarini
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Cláudia Marlise Balbinotti Andrade
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil.,Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|