1
|
Zamora-Ledezma C, Hernández AB, López-González I, Elango J, Paindépice J, Alexis F, González-Sánchez M, Morales-Flórez V, Mowbray DJ, Meseguer-Olmo L. Fabrication, Physical-Chemical and Biological Characterization of Retinol-Loaded Poly(vinyl Alcohol) Electrospun Fiber Mats for Wound Healing Applications. Polymers (Basel) 2023; 15:2705. [PMID: 37376351 PMCID: PMC10302737 DOI: 10.3390/polym15122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, there exists a huge interest in producing innovative, high-performance, biofunctional, and cost-efficient electrospun biomaterials based on the association of biocompatible polymers with bioactive molecules. Such materials are well-known to be promising candidates for three-dimensional biomimetic systems for wound healing applications because they can mimic the native skin microenvironment; however, many open questions such as the interaction mechanism between the skin and the wound dressing material remain unclear. Recently, several biomolecules were intended for use in combination with poly(vinyl alcohol) (PVA) fiber mats to improve their biological response; nevertheless, retinol, an important biomolecule, has not been combined yet with PVA to produce tailored and biofunctional fiber mats. Based on the abovementioned concept, the present work reported the fabrication of retinol-loaded PVA electrospun fiber mats (RPFM) with a variable content of retinol (0 ≤ Ret ≤ 25 wt.%), and their physical-chemical and biological characterization. SEM results showed that fiber mats exhibited diameters distribution ranging from 150 to 225 nm and their mechanical properties were affected with the increasing of retinol concentrations. In addition, fiber mats were able to release up to 87% of the retinol depending on both the time and the initial content of retinol. The cell culture results using primary mesenchymal stem cell cultures proved the biocompatibility of RPFM as confirmed by their effects on cytotoxicity (low level) and proliferation (high rate) in a dose-dependent manner. Moreover, the wound healing assay suggested that the optimal RPFM with retinol content of 6.25 wt.% (RPFM-1) enhanced the cell migratory activity without altering its morphology. Accordingly, it is demonstrated that the fabricated RPFM with retinol content below the threshold 0 ≤ Ret ≤ 6.25 wt.% would be an appropriate system for skin regenerative application.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM—Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Ana Belén Hernández
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| | - Ivan López-González
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| | - Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain;
| | - Janèle Paindépice
- École Polytechnique Universitaire D’ingénieurs de Montpellier (POLYTECH), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France;
| | - Frank Alexis
- Departmento de Ingenería Química, Colegio de Ciencias y Ingenierias, Universidad San Francisco de Quito (Ecuador), Campus Cumbayá, Diego de Robles s/n, Quito 170901, Ecuador;
| | - Manuela González-Sánchez
- Department of Physics of Condensed Matter, University of Seville (Spain), Av. Reina Mercedes, s/n, 41012 Seville, Spain; (M.G.-S.); (V.M.-F.)
| | - Víctor Morales-Flórez
- Department of Physics of Condensed Matter, University of Seville (Spain), Av. Reina Mercedes, s/n, 41012 Seville, Spain; (M.G.-S.); (V.M.-F.)
| | - Duncan John Mowbray
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador;
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| |
Collapse
|
2
|
Patil R, Dehari D, Chaudhuri A, Kumar DN, Kumar D, Singh S, Nath G, Agrawal AK. Recent advancements in nanotechnology-based bacteriophage delivery strategies against bacterial ocular infections. Microbiol Res 2023; 273:127413. [PMID: 37216845 DOI: 10.1016/j.micres.2023.127413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is growing as a critical challenge in a variety of disease conditions including ocular infections leading to disastrous effects on the human eyes. Staphylococcus aureus (S. aureus) mediated ocular infections are very common affecting different parts of the eye viz. vitreous chamber, conjunctiva, cornea, anterior and posterior chambers, tear duct, and eyelids. Blepharitis, dacryocystitis, conjunctivitis, keratitis, endophthalmitis, and orbital cellulitis are some of the commonly known ocular infections caused by S. aureus. Some of these infections are so fatal that they could cause bilateral blindness like panophthalmitis and orbital cellulitis, which is caused by methicillin-resistant S. aureus (MRSA) and vancomycin-resistance S. aureus (VRSA). The treatment of S. aureus infections with known antibiotics is becoming gradually difficult because of the development of resistance against multiple antibiotics. Apart from the different combinations and formulation strategies, bacteriophage therapy is growing as an effective alternative to treat such infections. Although the superiority of bacteriophage therapy is well established, yet physical factors (high temperatures, acidic pH, UV-rays, and ionic strength) and pharmaceutical barriers (poor stability, low in-vivo retention, controlled and targeted delivery, immune system neutralization, etc.) have the greatest influence on the viability of phage virions (also phage proteins). A variety of Nanotechnology based formulations such as polymeric nanoparticles, liposomes, dendrimers, nanoemulsions, and nanofibres have been recently reported to overcome the above-mentioned obstacles. In this review, we have compiled all these recent reports and discussed bacteriophage-based nanoformulations techniques for the successful treatment of ocular infections caused by multidrug-resistant S. aureus and other bacteria.
Collapse
Affiliation(s)
- Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India; Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
3
|
Mazuryk J, Klepacka K, Piechowska J, Kalecki J, Derzsi L, Piotrowski P, Paszke P, Pawlak DA, Berneschi S, Kutner W, Sharma PS. In-Capillary Photodeposition of Glyphosate-Containing Polyacrylamide Nanometer-Thick Films. ACS APPLIED POLYMER MATERIALS 2023; 5:223-235. [PMID: 36660253 PMCID: PMC9841503 DOI: 10.1021/acsapm.2c01461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The present research reports on in-water, site-specific photodeposition of glyphosate (GLP)-containing polyacrylamide (PAA-GLP) nanometer-thick films (nanofilms) on an inner surface of fused silica (fused quartz) microcapillaries presilanized with trimethoxy(octen-7-yl)silane (TMOS). TMOS was chosen because of the vinyl group presence in its structure, enabling its participation in the (UV light)-activated free-radical polymerization (UV-FRP) after its immobilization on a fused silica surface. The photodeposition was conducted in an aqueous (H2O/ACN; 3:1, v/v) solution, using UV-FRP (λ = 365 nm) of the acrylamide (AA) functional monomer, the N,N'-methylenebis(acrylamide) (BAA) cross-linking monomer, GLP, and the azobisisobutyronitrile (AIBN) UV-FRP initiator. Acetonitrile (ACN) was used as the porogen and the solvent to dissolve monomers and GLP. Because of the micrometric diameters of microcapillaries, the silanization and photodeposition procedures were first optimized on fused silica slides. The introduction of TMOS, as well as the formation of PAA and PAA-GLP nanofilms, was determined using atomic force microscopy (AFM), scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy, and confocal micro-Raman spectroscopy. Particularly, AFM and SEM-EDX measurements determined nanofilms' thickness and GLP content, respectively, whereas in-depth confocal (micro-Raman spectroscopy)-assisted imaging of PAA- and PAA-GLP-coated microcapillary inner surfaces confirmed the successful photodeposition. Moreover, we examined the GLP impact on polymer gelation by monitoring hydration in a hydrogel and a dried powder PAA-GLP. Our study demonstrated the usefulness of the in-capillary micro-Raman spectroscopy imaging and in-depth profiling of GLP-encapsulated PAA nanofilms. In the future, our simple and inexpensive procedure will enable the fabrication of polymer-based microfluidic chemosensors or adsorptive-separating devices for GLP detection, determination, and degradation.
Collapse
Affiliation(s)
- Jaroslaw Mazuryk
- Electrode
Processes Research Team, Institute of Physical
Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Bio
& Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- ENSEMBLE3
sp. z o. o., Wólczyńska
133, 01-919 Warsaw, Poland
| | - Joanna Piechowska
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Kalecki
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ladislav Derzsi
- Microfluidics
and Complex Fluids Research Team, Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Piotrowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- ENSEMBLE3
sp. z o. o., Wólczyńska
133, 01-919 Warsaw, Poland
| | - Piotr Paszke
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- ENSEMBLE3
sp. z o. o., Wólczyńska
133, 01-919 Warsaw, Poland
| | - Dorota A. Pawlak
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- ENSEMBLE3
sp. z o. o., Wólczyńska
133, 01-919 Warsaw, Poland
| | - Simone Berneschi
- Institute
of Applied Physics “Nello Carrara”—National Research
Council (IFAC-CNR), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, FI, Italy
| | - Wlodzimierz Kutner
- Electrode
Processes Research Team, Institute of Physical
Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Zhao J, Wang L, Zhang H, Liao B, Li Y. Progress of Research in In Situ Smart Hydrogels for Local Antitumor Therapy: A Review. Pharmaceutics 2022; 14:pharmaceutics14102028. [PMID: 36297463 PMCID: PMC9611441 DOI: 10.3390/pharmaceutics14102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer seriously threatens human health. Surgery, radiotherapy and chemotherapy are the three pillars of traditional cancer treatment, with targeted therapy and immunotherapy emerging over recent decades. Standard drug regimens are mostly executed via intravenous injection (IV), especially for chemotherapy agents. However, these treatments pose severe risks, including off-target toxic side effects, low drug accumulation and penetration at the tumor site, repeated administration, etc., leading to inadequate treatment and failure to meet patients’ needs. Arising from these challenges, a local regional anticancer strategy has been proposed to enhance therapeutic efficacy and concomitantly reduce systemic toxicity. With the advances in biomaterials and our understanding of the tumor microenvironment, in situ stimulus-responsive hydrogels, also called smart hydrogels, have been extensively investigated for local anticancer therapy due to their injectability, compatibility and responsiveness to various stimuli (pH, enzyme, heat, light, magnetic fields, electric fields etc.). Herein, we focus on the latest progress regarding various stimuli that cause phase transition and drug release from smart hydrogels in local regional anticancer therapy. Additionally, the challenges and future trends of the reviewed in situ smart hydrogels for local drug delivery are summarized and proposed.
Collapse
|
5
|
Yi Y, Wang X, Liu Z, Gao C, Fatehi P, Wang S, Kong F. A green composite hydrogel based on xylan and lignin with adjustable mechanical properties, high swelling, excellent
UV
shielding, and antioxidation properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yanbin Yi
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Xiaohui Wang
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Zhongming Liu
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Chao Gao
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Pedram Fatehi
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
- Chemical Engineering Department Lakehead University Thunder Bay Ontario Canada
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology (Shandong Academy Science) Jinan China
| |
Collapse
|
6
|
Boon-In S, Theerasilp M, Crespy D. Marrying the incompatible for better: Incorporation of hydrophobic payloads in superhydrophilic hydrogels. J Colloid Interface Sci 2022; 622:75-86. [PMID: 35489103 DOI: 10.1016/j.jcis.2022.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
HYPOTHESIS The entrapment of lyophobic in superhydrophilic hydrogels is challenging because of the intrinsic incompatibility between hydrophobic and hydrophilic molecules. To achieve such entrapment without affecting the hydrogel's formation, the electrospinning of nanodroplets or nanoparticles with a water-soluble polymer could reduce the incompatibility through the reduction of interfacial tension and the formation of a barrier film preventing coalescence or aggregation. EXPERIMENTS Nanodroplets or nanoparticles dispersion are electrospun in the presence of a hydrophilic polymer in hydrogel precursors. The dissolution of the hydrophilic nanofibers during electrospinning allows a redispersion of emulsion droplets and nanoparticles in the hydrogel's matrix. FINDINGS Superhydrophilic hydrogels with well-distributed hydrophobic nanodroplets or nanoparticles are obtained without detrimentally imparting the viscosity of hydrogel's precursors and the mechanical properties of the hydrogels. Compared with the incorporation of droplets without electrospinning, higher loadings of hydrophobic payload are achieved without premature leakage. This concept can be used to entrap hydrophobic agrochemicals, drugs, or antibacterial agents in simple hydrogels formulation.
Collapse
Affiliation(s)
- Supissra Boon-In
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
7
|
Alavarse AC, Frachini ECG, da Silva RLCG, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 2022; 202:558-596. [PMID: 35038469 DOI: 10.1016/j.ijbiomac.2022.01.029] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Polysaccharides and proteins are important macromolecules for developing hydrogels devoted to biomedical applications. Chemical hydrogels offer chemical, mechanical, and dimensional stability than physical hydrogels due to the chemical bonds among the chains mediated by crosslinkers. There are many crosslinkers to synthesize polysaccharides and proteins based on hydrogels. In this review, we revisited the crosslinking reaction mechanisms between synthetic or natural crosslinkers and polysaccharides or proteins. The selected synthetic crosslinkers were glutaraldehyde, carbodiimide, boric acid, sodium trimetaphosphate, N,N'-methylene bisacrylamide, and polycarboxylic acid, whereas the selected natural crosslinkers included transglutaminase, tyrosinase, horseradish peroxidase, laccase, sortase A, genipin, vanillin, tannic acid, and phytic acid. No less important are the reactions involving click chemistry and the macromolecular crosslinkers for polysaccharides and proteins. Literature examples of polysaccharides or proteins crosslinked by the different strategies were presented along with the corresponding highlights. The general mechanism involved in chemical crosslinking mediated by gamma and UV radiation was discussed, with particular attention to materials commonly used in digital light processing. The evaluation of crosslinking efficiency by gravimetric measurements, rheology, and spectroscopic techniques was presented. Finally, we presented the challenges and opportunities to create safe chemical hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Emilli Caroline Garcia Frachini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | - Vitoria Hashimoto Lima
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
8
|
Effect of Solution Miscibility on the Morphology of Coaxial Electrospun Cellulose Acetate Nanofibers. Polymers (Basel) 2021; 13:polym13244419. [PMID: 34960971 PMCID: PMC8707229 DOI: 10.3390/polym13244419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
Coaxial electrospinning (co-electrospinning) technique has greatly expanded the universality of fabricating core-shell polymer nanofibers. However, the effect of solution miscibility on the morphology of co-electrospun products remains unclear. Herein, different cellulose acetate (CA) solutions with high solution miscibility but distinctly different electrospinnability were used to survey the effect of solution miscibility on the co-electrospinning process. The structural characterizations show that co-electrospun products are composed of nanofibers with and without the core-shell structure. This indicates that partial solution mixing occurred during the co-electrospinning process instead of absolute no-mixing or complete mixing. Importantly, the solution miscibility also shows a significant influence on the product morphology. In particular, the transformation from nanofibers to microparticles was realized with the increase of core-to-shell flow ratio during the co-electrospinning of core electrosprayable CA/dimethylacetamide (DMAc) solution and shell electrospinnable CA/acetone-DMAc (2/1, v/v) solution. Results show that the solution miscibility exerts a significant effect on not only the formation of core-shell structure but also the product morphology. This work provides a new insight for the in-depth understanding of the co-electrospinning process.
Collapse
|