1
|
González-García DM, Rodríguez-Lorenzo LM, Marcos-Fernández Á, Jiménez-Gallegos R, Sánchez-Téllez DA, Téllez-Jurado L. Tailoring/Tuning Properties of Polyester Urea-Urethanes through Hybridization with Titania Obtained Using the Sol-Gel Process. Polymers (Basel) 2023; 15:polym15102299. [PMID: 37242875 DOI: 10.3390/polym15102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Hybrid materials have been studied because in these materials the properties of organic components, such as elasticity and biodegradability, could be combined with the properties of inorganic components, such as good biological response, thereby transforming them into a single material with improved properties. In this work, Class I hybrid materials based on polyester-urea-urethanes and titania were obtained using the modified sol-gel method. This was corroborated using the FT-IR and Raman techniques which highlighted the formation of hydrogen bonds and the presence of Ti-OH groups in the hybrid materials. In addition, the mechanical and thermal properties and degradability were measured using techniques, such as Vickers hardness, TGA, DSC, and hydrolytic degradation; these properties could be tailored according to hybridization between both organic and inorganic components. The results show that Vickers hardness increased by 20% in hybrid materials as compared to polymers; also, the surface hydrophilicity increases in the hybrid materials, improving their cell viability. Furthermore, cytotoxicity in vitro test was carried out using osteoblast cells for intended biomedical applications and they showed non-cytotoxic behavior.
Collapse
Affiliation(s)
- Dulce María González-García
- Department of Metallurgy and Materials Engineering, ESIQIE, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | | | - Ángel Marcos-Fernández
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Rodrigo Jiménez-Gallegos
- Department of Metallurgy and Materials Engineering, ESIQIE, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Daniela Anahí Sánchez-Téllez
- Department of Metallurgy and Materials Engineering, ESIQIE, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Lucía Téllez-Jurado
- Department of Metallurgy and Materials Engineering, ESIQIE, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
2
|
Rubio Hernández-Sampelayo A, Navarro R, González-García DM, García-Fernández L, Ramírez-Jiménez RA, Aguilar MR, Marcos-Fernández Á. Biodegradable and Biocompatible Thermoplastic Poly(Ester-Urethane)s Based on Poly(ε-Caprolactone) and Novel 1,3-Propanediol Bis(4-Isocyanatobenzoate) Diisocyanate: Synthesis and Characterization. Polymers (Basel) 2022; 14:1288. [PMID: 35406162 PMCID: PMC9002640 DOI: 10.3390/polym14071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
A series of non-toxic biodegradable and biocompatible polyurethanes bearing p-aminobenzoate moieties are presented. The introduction of this attractive motif was carried out by the synthesis of a novel isocyanate. These biodegradable polymers were chemically and physically characterized by several techniques and methods including bioassay and water uptake measurements. The molecular weight of the soft segment (poly-ε-caprolactone, PCL) and hard segment crystallinity dictated the mechanical behavior and water uptake. The behavior of short PCL-based polyurethanes was elastomeric, whilst increasing the molecular weight of the soft segment led to plastic polyurethanes. Water uptake was hindered for long PCL due to the crystallization of the soft segment within the polyurethane matrix. Furthermore, two different types of chain extender, hydrolyzable and non-hydrolyzable, were also evaluated: polyurethanes based on hydrolyzable chain extenders reached higher molecular weights, thus leading to a better performance than their unhydrolyzable counterparts. The good cell adhesion and cytotoxicity results demonstrated the cell viability of human osteoblasts on the surfaces of these non-toxic biodegradable polyurethanes.
Collapse
Affiliation(s)
- Alejandra Rubio Hernández-Sampelayo
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Universidad Nacional de Educación a Distancia (UNED), Facultad de Ciencias, C/Bravo Murillo, 38, 28015 Madrid, Spain
| | - Rodrigo Navarro
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
| | - Dulce María González-García
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM-Zacatenco, Col Lindavista, Mexico City 07738, Mexico;
- Universidad de Guanajuato, Departamento de Química, Noria Alta s/n, Guanajuato 36050, Mexico
| | - Luis García-Fernández
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Biomedical Research Networking Center in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Avenida Monforte de Lemons 3–5, 28029 Madrid, Spain
| | - Rosa Ana Ramírez-Jiménez
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Biomedical Research Networking Center in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Avenida Monforte de Lemons 3–5, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
- Biomedical Research Networking Center in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Avenida Monforte de Lemons 3–5, 28029 Madrid, Spain
| | - Ángel Marcos-Fernández
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain; (A.R.H.-S.); (L.G.-F.); (R.A.R.-J.); (M.R.A.)
| |
Collapse
|