1
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
2
|
In vitro evaluation of antibacterial activity and biocompatibility of synergistically cross-linked gelatin-alginate hydrogel beads as gentamicin carriers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Arisaka Y, Masuda H, Yoda T, Yui N. Photo‐tethering of collagen onto polyetheretherketone surfaces to enhance osteoblastic and endothelial performance. Macromol Biosci 2022; 22:e2200115. [DOI: 10.1002/mabi.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/10/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshinori Arisaka
- Department of Organic Biomaterials Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| | - Hiroki Masuda
- Department of Maxillofacial Surgery Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) 1‐5‐45 Yushima Bunkyo Tokyo 113–8549 Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) 1‐5‐45 Yushima Bunkyo Tokyo 113–8549 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University (TMDU) 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| |
Collapse
|
4
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
5
|
Gao R, Xie J, Yang J, Zhuo C, Fu J, Zhao P. Research on the Fused Deposition Modeling of Polyether Ether Ketone. Polymers (Basel) 2021; 13:2344. [PMID: 34301101 PMCID: PMC8309588 DOI: 10.3390/polym13142344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
As a special engineering polymer, polyether ether ketone (PEEK) has been used widely due to its excellent mechanical properties, high thermal stability, and chemical resistance. Fused deposition modeling (FDM) is a promising process for fabricating PEEK parts. However, due to the semi-crystalline property and high melting point of PEEK, determining appropriate process parameters is important to reduce warpage deformation and improve the mechanical properties of PEEK. In this article, the influence of raster angle and infill density was determined by single factor experiment, which are the two most important parameters. The results showed that samples with 0°/90° raster angle and 50% infill density had the best comprehensive properties in terms of warpage deformation, tensile strength, and specific strength. Subsequently, based on the results above, the effects of printing speed, nozzle temperature, platform temperature, raster width, and layer thickness were analyzed by orthogonal experiment. The results indicated that platform temperature had the greatest impact on warpage deformation while printing speed and nozzle temperature were significant parameters on tensile strength. Through optimization, warpage deformation of the samples could be reduced to almost 0 and tensile strength could increase by 19.6% (from 40.56 to 48.50 MPa). This will support the development of FDM for PEEK.
Collapse
Affiliation(s)
- Ruoxiang Gao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (R.G.); (J.X.); (J.Y.); (C.Z.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jun Xie
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (R.G.); (J.X.); (J.Y.); (C.Z.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jinghui Yang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (R.G.); (J.X.); (J.Y.); (C.Z.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Chaojie Zhuo
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (R.G.); (J.X.); (J.Y.); (C.Z.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (R.G.); (J.X.); (J.Y.); (C.Z.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (R.G.); (J.X.); (J.Y.); (C.Z.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Chang KC, Chen JC, Cheng IT, Haung SM, Liu SM, Ko CL, Sun YS, Shih CJ, Chen WC. Strength and Biocompatibility of Heparin-Based Calcium Phosphate Cement Grafted with Ferulic Acid. Polymers (Basel) 2021; 13:2219. [PMID: 34279363 PMCID: PMC8271828 DOI: 10.3390/polym13132219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022] Open
Abstract
The biomimetic synthesis of carbonated apatites by biomolecule-based templates is a promising way for broadening apatite applications in bone tissue regeneration. In this work, heparin was used as an organic template to prepare uniform carbonate-based apatite nanorods (CHA) and graft ferulic acid (F-CHA) for enhanced bone mineralization. Next, by combining calcium phosphate cement (CPC) with different F-CHA/CPC ratios, a new type of injectable bone cement combined with F-CHA bioactive apatite was developed (CPC + F-CHA). The physicochemical properties, biocompatibility, and mineralization potential of the CPC + F-CHA composites were determined in vitro. The experimental results confirmed the preparation of highly biocompatible CHA and the compatibility of F-CHA with CPC. Although CPC + F-CHA composites with F-CHA (2.5 wt%, 5 wt%, and 10 wt%) showed a significant reduction in compressive strength (CS), compositing CPC with 10 wt% F-CHA yielded a CS suitable for orthopedic repair (CS still larger than 30 MPa). Spectroscopic and phase analyses revealed that the phase of the hydrothermally synthesized CHA product was not modified by the heparin template. Injection and disintegration tests indicated that the CPC + F-CHA composites have good biocompatibility even at 10 wt% F-CHA. D1 osteoprogenitor cells were cultured with the composites for 7 days in vitro, and the CPC + 10%F-CHA group demonstrated significantly promoted cell mineralization compared with other groups. Given these results, the use of over 10% F-CHA in CPC composites should be avoided if the latter is to be applied to load-bearing areas. A stress-shielding device may also be recommended to stabilize these areas. These newly developed biocompatible CPC + F-CHA have great potential as osteoconductive bone fillers for bone tissue engineering.
Collapse
Affiliation(s)
- Kai-Chi Chang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Jian-Chih Chen
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - I-Tse Cheng
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Ssu-Meng Haung
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Chia-Ling Ko
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|