1
|
Zhu F, Liu C, Yang D, Li G. Preparation of Polydopamine Functionalized HNIW Crystals and Application in Solid Propellants. Polymers (Basel) 2024; 16:1566. [PMID: 38891512 PMCID: PMC11174638 DOI: 10.3390/polym16111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The application of hexanitrohexaazaisowurtzitane (HNIW) as an oxidizer in solid propellants aligns with the pursuit of high-energy materials. However, the phase transformation behavior and high impact sensitivity of HNIW are its limitations. Due to the strong adhesion and mild synthesis conditions, polydopamine (PDA) has been employed to modify HNIW. However, the method suffers from a slow coating process and a non-ideal coating effect under short reaction time. Herein, oxygen-accelerated dopamine in situ polymerization coating method was developed. It was found that oxygen not only reduced the coating time but also contributed to forming a dense and uniform PDA layer. HNIW@PDA coated in oxygen for 6 h exhibited the most favorable performance, with a delay of 20.8 °C in the phase transition temperature and a reduction of 145.45% in the impact sensitivity. The -OH groups on the surface of PDA enhanced the interaction between HNIW and polymer binders, resulting in a 20.36% reduction in the dewetting percentage. The lower content of PDA in HNIW@PDA (1.17%) resulted in minimal variation in the heat of explosion for HNIW@PDA-based HTPB propellant (6287 kJ/kg) in comparison to HNIW-based HTPB propellant (6297 kJ/kg). Hence, HNIW@PDA-based propellants are expected to offer an alternative with promising safety and mechanical performance compared to existing HNIW-based propellants, thus facilitating the application of HNIW in high-energy propellants. This work presents a low-cost method for efficiently inhibiting the phase transformation of polycrystalline explosives and reducing the impact sensitivity. It also offers a potential approach to enhance the interfacial interaction between nitro-containing explosives and polymer binders.
Collapse
Affiliation(s)
| | | | | | - Guoping Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Pacheco A, Evangelista-Osorio A, Muchaypiña-Flores KG, Marzano-Barreda LA, Paredes-Concepción P, Palacin-Baldeón H, Dos Santos MSN, Tres MV, Zabot GL, Olivera-Montenegro L. Polymeric Materials Obtained by Extrusion and Injection Molding from Lignocellulosic Agroindustrial Biomass. Polymers (Basel) 2023; 15:4046. [PMID: 37896290 PMCID: PMC10610583 DOI: 10.3390/polym15204046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
This review presents the advances in polymeric materials achieved by extrusion and injection molding from lignocellulosic agroindustrial biomass. Biomass, which is derived from agricultural and industrial waste, is a renewable and abundant feedstock that contains mainly cellulose, hemicellulose, and lignin. To improve the properties and functions of polymeric materials, cellulose is subjected to a variety of modifications. The most common modifications are surface modification, grafting, chemical procedures, and molecule chemical grafting. Injection molding and extrusion technologies are crucial in shaping and manufacturing polymer composites, with precise control over the process and material selection. Furthermore, injection molding involves four phases: plasticization, injection, cooling, and ejection, with a focus on energy efficiency. Fundamental aspects of an injection molding machine, such as the motor, hopper, heating units, nozzle, and clamping unit, are discussed. Extrusion technology, commonly used as a preliminary step to injection molding, presents challenges regarding fiber reinforcement and stress accumulation, while lignin-based polymeric materials are challenging due to their hydrophobicity. The diverse applications of these biodegradable materials include automotive industries, construction, food packaging, and various consumer goods. Polymeric materials are positioned to offer even bigger contributions to sustainable and eco-friendly solutions in the future, as research and development continues.
Collapse
Affiliation(s)
- Ada Pacheco
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Arian Evangelista-Osorio
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Katherine Gabriela Muchaypiña-Flores
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Luis Alejandro Marzano-Barreda
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Perla Paredes-Concepción
- Grupo de Ciencia, Tecnología e Innovación en Alimentos, Universidad San Ignacio de Loyola, La Molina 15024, Peru;
| | - Heidy Palacin-Baldeón
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Maicon Sérgio Nascimento Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Luis Olivera-Montenegro
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
- Grupo de Ciencia, Tecnología e Innovación en Alimentos, Universidad San Ignacio de Loyola, La Molina 15024, Peru;
| |
Collapse
|
3
|
Abas KM, Al Kiey SA. Facile synthesis of MOF-derived N doped ZnO/C nanoparticles and its adsorption activity toward dye removal. BMC Chem 2023; 17:126. [PMID: 37749623 PMCID: PMC10521423 DOI: 10.1186/s13065-023-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Metal-organic framework (MOF)-derived materials have gained an increasing interest and showed potential adsorption features in numerous applications. Significant attempts have been performed to boost the structure, functionality, surface area and porosity in addition to adsorption performance of MOF-derived carbon nanoparticles. Here, nitrogen-doped ZnO/carbon nanoparticles were synthesized by directly pyrolysis of Zn based metal organic framework (ZIF-8) in a nitrogen atmosphere at two different temperatures (600 and 800 °C), followed by chemical impregnation with ZnCl2 solution with ratio (10:1) wt/wt, and thermal activation at 500 °C for 1 h. SEM, TEM, XPS, nitrogen adsorption-desorption method, and TGA characterization techniques were employed to investigate the morphology and structure characteristics. Then, thorough analysis of N doped ZnO/C-(600 and 800), adsorption capacity to remove Remazol brilliant blue reactive (RBBR) dye from aqueous phase was conducted. At room temperature, the porous N doped ZnO/C with high surface area attained a maximum adsorption capacity about 49.3 mg/g and demonstrated a strong adsorption capacity toward RBBR dye. The insights of kinetic, thermodynamic and adsorption isotherm studies of the as-demonstrated samples open up more discussion for MOFs-derived carbon adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Khadiga Mohamed Abas
- Laboratory of Surface Chemistry and Catalysis, National Research Centre, 33 El-Bohouth St., Giza, 12622, Egypt
| | - Sherief A Al Kiey
- Electrochemistry and Corrosion Laboratory, Physical Chemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
- Material Engineering Lab, Central laboratories Network, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
4
|
Abas KM, Attia AAM. Thermoplastic starch (TPS)-based composite films for wastewater treatment: synthesis and fundamental characterization. BMC Chem 2023; 17:84. [PMID: 37482611 PMCID: PMC10364412 DOI: 10.1186/s13065-023-00998-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Modification of starch is a potential basic research aiming to improve its water barrier properties. The general purpose of this study is to manufacture cross-linked iodinated starch citrate (ISC) with a degree of substitution (DS) ≈ 0.1 by modifying native corn starch with citric acid in the presence of iodine as an oxidizing agent. Thermoplastic starch (TPS) was generated with urea as a plasticizer and blended with various concentrations of ISC of (2, 4, 6%) (wt/wt) to obtain (UTPS/ISC2, UTPS/ISC4, and UTPS/ISC6). Nanocomposite film was formed from UTPS/ISC2 in presence of stabilized iodinated cellulose nanocrystals UTPS/ISC2/SICNCs via gelatinization at a temperature of 80ºC. Water solubility and water vapor release were studied amongst the water barrier features. The fabricated starch-based composite films were evaluated utilizing Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electronic Microscope analysis (SEM), surface area, and tensile measurements. The adsorption of crystal violet (CV) dye onto produced samples was examined in an aqueous solution. The findings revealed that the UTPS/ISC2/ISCNCs has 83% crystal violet elimination effectiveness. Moreover, the adsorption isotherms were assessed and figured out to vary in the order of Langmuir > Temkin > Freundlich > Dubinin-Radushkevich.
Collapse
Affiliation(s)
- Khadiga Mohamed Abas
- Laboratory of Surface Chemistry and Catalysis, National Research Center, 33 El-Bohouth St., Giza, 12622, Egypt
| | - Amina Abdel Meguid Attia
- Laboratory of Surface Chemistry and Catalysis, National Research Center, 33 El-Bohouth St., Giza, 12622, Egypt.
| |
Collapse
|
5
|
Harahap M, Perangin-Angin YA, Purwandari V, Goei R, Tok ALY, Gea S. Acetylated lignin from oil palm empty fruit bunches and its electrospun nanofibres with PVA: Potential carbon fibre precursor. Heliyon 2023; 9:e14556. [PMID: 36967934 PMCID: PMC10031473 DOI: 10.1016/j.heliyon.2023.e14556] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The electrospinning of acetylated lignin/polyvinyl alcohol (PVA) nanofibres was carried out to expand the application of lignin materials obtained from oil palm empty fruit bunches (OPEFB). Lignin was isolated by the steam explosion method and subsequently precipitated using H2SO4. Acetylated lignin was produced by mixing acetic anhydride and pyridine at a 2:1 v/v ratio. Following the acetylation process, FTIR analysis showed the absorption of the C=O carbonyl group at wavenumber 1714.6 cm-1. The chemical structures of isolated and acetylated lignin were established using 1H NMR spectral analysis, and XRD examination demonstrated their amorphous character. The electrospinning process of acetylated lignin and PVA solution was then carried out at 15 kV voltage, 0.8 mL/h flow rate, and 12 cm distance between the needle and collector. The sample exhibited electrical conductivity of 443 μS/cm and viscosity of 2.8 × 10-3 Pa s. The morphology analysis showed that there were more beads on the surface of lignin/PVA nanofibres than acetylated lignin/PVA nanofibres. In addition, acetylated lignin/PVA nanofibre was more stable than lignin/PVA. The G-band of carbonized material increased with the presence of lignin. The works presented suggest the potential of using waste materials such as OPEFB as a suitable precursor for the preparation of carbon fibre.
Collapse
|
6
|
Li X, Peng Y, Deng Y, Ye F, Zhang C, Hu X, Liu Y, Zhang D. Recycling and Reutilizing Polymer Waste via Electrospun Micro/Nanofibers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1663. [PMID: 35630885 PMCID: PMC9146546 DOI: 10.3390/nano12101663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023]
Abstract
The accumulation of plastic waste resulting from the increasing demand for non-degradable plastics has led to a global environmental crisis. The severe environmental and economic drawbacks of inefficient, expensive, and impractical traditional waste disposal methods, such as landfills, incineration, plastic recycling, and energy production, limit the expansion of their applications to solving the plastic waste problem. Finding novel ways to manage the large amount of disposed plastic waste is urgent. Until now, one of the most valuable strategies for the handling of plastic waste has been to reutilize the waste as raw material for the preparation of functional and high-value products. Electrospun micro/nanofibers have drawn much attention in recent years due to their advantages of small diameter, large specific area, and excellent physicochemical features. Thus, electrospinning recycled plastic waste into micro/nanofibers creates diverse opportunities to deal with the environmental issue caused by the growing accumulation of plastic waste. This paper presents a review of recycling and reutilizing polymer waste via electrospinning. Firstly, the advantages of the electrospinning approach to recycling plastic waste are summarized. Then, the studies of electrospun recycled plastic waste are concluded. Finally, the challenges and future perspectives of electrospun recycled plastic waste are provided. In conclusion, this paper aims to provide a comprehensive overview of electrospun recycled plastic waste for researchers to develop further studies.
Collapse
Affiliation(s)
- Xiuhong Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Yujie Peng
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Yichen Deng
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Fangping Ye
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Chupeng Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Xinyu Hu
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daode Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| |
Collapse
|
7
|
Nada AA, Eckstein Andicsová A, Mosnáček J. Irreversible and Self-Healing Electrically Conductive Hydrogels Made of Bio-Based Polymers. Int J Mol Sci 2022; 23:842. [PMID: 35055029 PMCID: PMC8776002 DOI: 10.3390/ijms23020842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Electrically conductive materials that are fabricated based on natural polymers have seen significant interest in numerous applications, especially when advanced properties such as self-healing are introduced. In this article review, the hydrogels that are based on natural polymers containing electrically conductive medium were covered, while both irreversible and reversible cross-links are presented. Among the conductive media, a special focus was put on conductive polymers, such as polyaniline, polypyrrole, polyacetylene, and polythiophenes, which can be potentially synthesized from renewable resources. Preparation methods of the conductive irreversible hydrogels that are based on these conductive polymers were reported observing their electrical conductivity values by Siemens per centimeter (S/cm). Additionally, the self-healing systems that were already applied or applicable in electrically conductive hydrogels that are based on natural polymers were presented and classified based on non-covalent or covalent cross-links. The real-time healing, mechanical stability, and electrically conductive values were highlighted.
Collapse
Affiliation(s)
- Ahmed Ali Nada
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia;
- Pretreatment and Finishing of Cellulose Based Textiles Department, National Research Centre, Giza 12622, Egypt
| | | | - Jaroslav Mosnáček
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia;
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
8
|
Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications. MATERIALS 2021; 14:ma14164694. [PMID: 34443216 PMCID: PMC8401388 DOI: 10.3390/ma14164694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials.
Collapse
|