1
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
2
|
Kaveh M, Yeganehzad S, Hesarinejad MA, Kiumarsi M, Abdollahi Moghaddam MR. Polylactic Acid/Saqqez Gum Blends for Chewing Gum Applications: Impact of Plasticizers on Thermo-Mechanical and Morphological Properties. Polymers (Basel) 2024; 16:1469. [PMID: 38891416 PMCID: PMC11174524 DOI: 10.3390/polym16111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
This study investigated a blend of poly (lactic acid) (PLA) and Saqqez gum, with a weight ratio of 70:30, respectively, along with two plasticizers, acetyl tributyl citrate (ATBC) and polyethylene glycol (PEG), at three different concentrations (14%, 16% and 18% by weight of the PLA). The blend was analyzed using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile tests, water-absorption behavior (coefficients of water absorption, sorption, diffusion and permeability of the samples during 240 h) and chemical resistance (exposure to 1 mol/L HCl and 1 mol/L NaOH for 240 h). The desired elastomer blend was then used to prepare natural chewing gum, which was subsequently subjected to texture profile analyzer (TPA) tests and sensory evaluation. The results showed that the addition of both plasticizers increased the tensile properties of the blend. Compared to neat PLA, all the blends exhibited an increase in elongation at break and a decrease in yield strength, with the maximum elongation at break (130.6%) and the minimum yield strength (12.2 MPa) observed in the blend containing 16% ATBC. Additionally, all the thermal attributes studied, including Tg, Tc and Tm, were lower than those of neat PLA, and the Tg values deviated from the values predicted via Fox's equation. SEM images of the blends confirmed that plasticization improved the homogeneity and distribution of the components in the blend structure. PEG 18% and ATBC 16% exhibit the highest and lowest water-absorption behavior, respectively. Regarding chemical resistance, all blends showed weight gain when exposed to HCl, while no weight loss was observed for resistance to NaOH. The chewing gum sample obtained similar values for the mentioned tests compared to the commercial control sample. Overall, the results indicate that plasticization enhances the structure and performance of the PLA/Saqqez gum blend and further investigation is warranted.
Collapse
Affiliation(s)
- Mona Kaveh
- Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157.356, Iran; (M.K.); (M.R.A.M.)
| | - Samira Yeganehzad
- Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157.356, Iran; (M.K.); (M.R.A.M.)
| | - Mohammad Ali Hesarinejad
- Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157.356, Iran; (M.K.); (M.R.A.M.)
| | - Maryam Kiumarsi
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraβe 14, A-1090 Vienna, Austria;
| | | |
Collapse
|
3
|
Zong Y, Liang G, Li Y, Li M, Song Y, Liao Y, Yang Y, Zhu Y. Fabrication of antimicrobial and high-toughness poly (lactic acid) composite films using tung oil derivatives. Int J Biol Macromol 2024; 254:127792. [PMID: 37923033 DOI: 10.1016/j.ijbiomac.2023.127792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Tung oil derivatives are promising alternatives to traditional toxic plasticizers for improving the toughness of poly (lactic acid) (PLA) films. In this study, a tung oil-based quaternary ammonium salt (Q-ETO) was synthesized using a multi-step process involving epoxidation, ring opening, and substitution reactions. PLA based composite films with various amounts of Q-ETO were prepared by solvent casting. The impact of various amount of Q-ETO on PLA/Q-ETO composite films were evaluated with regard to their mechanical properties, hydrophilicity, water vapor permeability, optical properties, thermal stability, antibacterial properties, and leaching properties. The PLA/5%Q-ETO composite film yielded the highest elongation at break (82.52 ± 9.53 %), which was 153.67 % higher than that of pure PLA. All PLA composite films showed an antibacterial efficiency exceeding 90 % against both S. aureus and E. coli. Moreover, the PLA/Q-ETO composite film blocked the transmission of both ultraviolet and visible light while preventing the permeation of water vapor. The addition of Q-ETO only weakly affected the color and thermal stability of the PLA/Q-ETO composite film. Given the numerous advantages of the PLA composite film, it has significant potential for application as a food packaging material.
Collapse
Affiliation(s)
- Yijun Zong
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Ganbo Liang
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Yuhang Li
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Min Li
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Yuwei Song
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Youwei Liao
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Yan Yang
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China.
| | - Yuan Zhu
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| |
Collapse
|
4
|
da Silva BSF, Ferreira NR, Alamar PD, de Melo e Silva T, Pinheiro WBDS, dos Santos LN, Alves CN. FT-MIR-ATR Associated with Chemometrics Methods: A Preliminary Analysis of Deterioration State of Brazil Nut Oil. Molecules 2023; 28:6878. [PMID: 37836721 PMCID: PMC10574611 DOI: 10.3390/molecules28196878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Brazil nut oil is highly valued in the food, cosmetic, chemical, and pharmaceutical industries, as well as other sectors of the economy. This work aims to use the Fourier transform infrared (FTIR) technique associated with partial least squares regression (PLSR) and principal component analysis (PCA) to demonstrate that these methods can be used in a prior and rapid analysis in quality control. Natural oils were extracted and stored for chemical analysis. PCA presented two groups regarding the state of degradation, subdivided into super-degraded and partially degraded groups in 99.88% of the explained variance. The applied PLS reported an acidity index (AI) prediction model with root mean square error of calibration (RMSEC) = 1.8564, root mean square error of cross-validation (REMSECV) = 4.2641, root mean square error of prediction (RMSEP) = 2.1491, R2cal (calibration correlation coefficient) equal to 0.9679, R2val (validation correlation coefficient) equal to 0.8474, and R2pred (prediction correlation coefficient) equal to 0, 8468. The peroxide index (PI) prediction model showed RMSEC = 0.0005, REMSECV = 0.0016, RMSEP = 0.00079, calibration R2 equal to 0.9670, cross-validation R2 equal to 0.7149, and R2 of prediction equal to 0.9099. The physical-chemical analyses identified that five samples fit in the food sector and the others fit in other sectors of the economy. In this way, the preliminary monitoring of the state of degradation was reported, and the prediction models of the peroxide and acidity indexes in Brazil nut oil for quality control were determined.
Collapse
Affiliation(s)
- Braian Saimon Frota da Silva
- Graduate Program in Chemistry, Federal University of Pará (PPGQ), Belém 66075-110, Brazil; (T.d.M.e.S.); (W.B.d.S.P.); (C.N.A.)
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil;
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (P.D.A.); (L.N.d.S.)
| | - Priscila Domingues Alamar
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (P.D.A.); (L.N.d.S.)
| | - Thiago de Melo e Silva
- Graduate Program in Chemistry, Federal University of Pará (PPGQ), Belém 66075-110, Brazil; (T.d.M.e.S.); (W.B.d.S.P.); (C.N.A.)
| | | | - Lucely Nogueira dos Santos
- Laboratory of Biotechnological Processes (LABIOTEC), Graduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, Brazil; (P.D.A.); (L.N.d.S.)
| | - Cláudio Nahum Alves
- Graduate Program in Chemistry, Federal University of Pará (PPGQ), Belém 66075-110, Brazil; (T.d.M.e.S.); (W.B.d.S.P.); (C.N.A.)
| |
Collapse
|
5
|
Lanero F, Bresolin BM, Scettri A, Nogarole M, Schievano E, Mammi S, Saielli G, Famengo A, Semenzato A, Tafuro G, Sgarbossa P, Bertani R. Activation of Vegetable Oils by Reaction with Maleic Anhydride as a Renewable Source in Chemical Processes: New Experimental and Computational NMR Evidence. Molecules 2022; 27:8142. [PMID: 36500234 PMCID: PMC9741123 DOI: 10.3390/molecules27238142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Vegetable oils are bio-based and sustainable starting materials that can be used to develop chemicals for industrial processes. In this study, the functionalization of three vegetable oils (grape, hemp, and linseed) with maleic anhydride was carried out either by conventional heating or microwave activation to obtain products that, after further reactions, can enhance the water dispersion of oils for industrial applications. To identify the most abundant derivatives formed, trans-3-octene, methyl oleate, and ethyl linoleate were reacted as reference systems. A detailed NMR study, supported by computational evidence, allowed for the identification of the species formed in the reaction of trans-3-octene with maleic anhydride. The signals in the 1H NMR spectra of the alkenyl succinic anhydride (ASA) moieties bound to the organic chains were clearly identified. The reactions achieved by conventional heating were carried out for 5 h at 200 °C, resulting in similar or lower amounts of ASA units/g of oil with respect to the reactions performed by microwave activation, which, however, induced a higher viscosity of the samples.
Collapse
Affiliation(s)
- Francesco Lanero
- Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Bianca Maria Bresolin
- Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
- Stazione Sperimentale per L’industria Delle Pelli e Delle Materie Concianti s.r.l., Organismo di Ricerca Nazionale delle CCIAA di Napoli, Pisa e Vicenza, Via Achille Papa 28, 36071 Arzignano, Italy
| | - Anna Scettri
- Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Marco Nogarole
- Stazione Sperimentale per L’industria Delle Pelli e Delle Materie Concianti s.r.l., Organismo di Ricerca Nazionale delle CCIAA di Napoli, Pisa e Vicenza, Via Achille Papa 28, 36071 Arzignano, Italy
| | - Elisabetta Schievano
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Stefano Mammi
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giacomo Saielli
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
- CNR—Institute on Membrane Technology, Unit of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Alessia Famengo
- CNR—Institute of Condensed Matter Chemistry and Technologies for Energy, C.so Stati Uniti 4, 35127 Padova, Italy
| | - Alessandra Semenzato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | | | - Paolo Sgarbossa
- Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
- CIRCC—Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unit of Padova, Piazza Umberto I, 70121 Bari, Italy
| | - Roberta Bertani
- Dipartimento di Ingegneria Industriale, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
- CIRCC—Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unit of Padova, Piazza Umberto I, 70121 Bari, Italy
| |
Collapse
|
6
|
Ferri JM, Aldas M, Rayon E, Samper MD, Lozano-Pérez AA. The Influence of Different Sustainable Silk-Based Fillers on the Thermal and Mechanical Properties of Polylactic Acid Composites. Polymers (Basel) 2022; 14:5016. [PMID: 36433143 PMCID: PMC9695667 DOI: 10.3390/polym14225016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In this work, different silk fillers combined with maleinized corn oil (MCO), as environmentally friendly plasticizers, were used to modify the mechanical and thermal properties of polylactic acid (PLA) composites. Melt extrusion and injection were used to obtain samples with a content of 10 wt.% of MCO and 0.5 phr of different silk fillers: crushed silk (CS), silk fibroin microparticles (SFM), and silk fibroin nanoparticles (SFN). PLA formulation with 10 wt.% of MCO and 0.5 g of CS per hundred grams of composite (phr) showed the highest increase in mechanical ductile properties with an increase in elongation at break of approximately 1400%, compared with PLA. Differential scanning calorimetry (DSC) showed a decrease of 2 °C in their glass transition temperature with the addition of different silk fillers. In addition, SFM and SFN increase the degree of crystallinity of PLA. This increment was also confirmed by infrared spectroscopy analysis. Field emission scanning electron microscopy (FESEM) images revealed a good dispersion of the different silk fillers. Among them, PLA formulation with 10 wt.% MCO and 0.5 phr of SFN, showed an optimal balance between maximum resistance and elongation at break, with 52.0 MPa and 10.8%, respectively, improving elongation at break by 635%. Furthermore, all samples were satisfactorily disintegrated under composting conditions.
Collapse
Affiliation(s)
- José Miguel Ferri
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
| | - Miguel Aldas
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Emilio Rayon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Antonio Abel Lozano-Pérez
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), 30150 La Alberca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca; 30120 El Palmar, Murcia, Spain
| |
Collapse
|
7
|
Sempere-Torregrosa J, Ferri JM, de la Rosa-Ramírez H, Pavon C, Samper MD. Effect of Epoxidized and Maleinized Corn Oil on Properties of Polylactic Acid (PLA) and Polyhydroxybutyrate (PHB) Blend. Polymers (Basel) 2022; 14:polym14194205. [PMID: 36236152 PMCID: PMC9571960 DOI: 10.3390/polym14194205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The present work analyzes the influence of modified, epoxidized and maleinized corn oil as a plasticizing and/or compatibilizing agent in the PLA-PHB blend (75% PLA and 25% PHB wt.%). The chemical modification processes of corn oil were successfully carried out and different quantities were used, between 0 and 10% wt.%. The different blends obtained were characterized by thermal, mechanical, morphological, and disintegration tests under composting conditions. It was observed that to achieve the same plasticizing effect, less maleinized corn oil (MCO) is needed than epoxidized corn oil (ECO). Both oils improve the ductile properties of the PLA-PHB blend, such as elongation at break and impact absorb energy, however, the strength properties decrease. The ones that show the highest ductility values are those that contain 10% ECO and 5% MCO, improving the elongation of the break of the PLA-PHB blend by more than 400% and by more than 800% for the sample PLA.
Collapse
|
8
|
Seyed Khabbaz H, Garmabi H. Modification of polylactide by reactive blending with polyhydroxybutyrate oligomers formed by thermal recycling through E1cB-elimination pathway. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|