1
|
de Sousa Alves BA, Kontziampasis D, Soliman AH. The Quest for the Holy Grail Of 3D Printing: A Critical Review of Recycling in Polymer Powder Bed Fusion Additive Manufacturing. Polymers (Basel) 2024; 16:2306. [PMID: 39204526 PMCID: PMC11359051 DOI: 10.3390/polym16162306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The benefits of additive manufacturing (AM) are widely recognised, boosting the AM method's use in industry, while it is predicted AM will dominate the global manufacturing industry. Alas, 3D printing's growth is hindered by its sustainability. AM methods generate vast amounts of residuals considered as waste, which are disposed of. Additionally, the energy consumed, the materials used, and numerous other factors render AM unsustainable. This paper aims to bring forward all documented solutions in the literature. The spotlight is on potential solutions for the Powder Bed Fusion (PBF) AM, focusing on Selective Laser Sintering (SLS), as these are candidates for mass manufacturing by industry. Solutions are evaluated critically, to identify research gaps regarding the recyclability of residual material. Only then can AM dominate the manufacturing industry, which is extremely important since this is a milestone for our transition into sustainable manufacturing. This transition itself is a complex bottleneck on our quest for becoming a sustainable civilisation. Unlike previous reviews that primarily concentrate on specific AM recycling materials, this paper explores the state of the art in AM recycling processes, incorporating the latest market data and projections. By offering a holistic and forward-looking perspective on the evolution and potential of AM, this review serves as a valuable resource for researchers and industry professionals alike.
Collapse
Affiliation(s)
- Bruno Alexandre de Sousa Alves
- Department of Engineering, School of Digital, Technology, Innovation & Business, Staffordshire University, College Road, Stoke-on-Trent, Staffordshire ST4 2DE, UK;
- Ford-Werke GmbH, Henry-Ford-Straße 1, 50735 Cologne, Germany
| | - Dimitrios Kontziampasis
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
- Dundee International Institute of Central South University, Central South University, Tongzipo Road, Changsha 410013, China
- School of Mechanical Engineering, Faculty of Science and Engineering, University of Leeds, Woodhouse Ln, Leeds LS 29JT, UK
| | - Abdel-Hamid Soliman
- Department of Engineering, School of Digital, Technology, Innovation & Business, Staffordshire University, College Road, Stoke-on-Trent, Staffordshire ST4 2DE, UK;
| |
Collapse
|
2
|
Ahmed W, Al-Marzouqi AH, Nazir MH, Rizvi TA, Zaneldin E, Khan M, Aziz M. Investigating the Properties and Characterization of a Hybrid 3D Printed Antimicrobial Composite Material Using FFF Process: Innovative and Swift. Int J Mol Sci 2023; 24:ijms24108895. [PMID: 37240240 DOI: 10.3390/ijms24108895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Novel strategies and materials have gained the attention of researchers due to the current pandemic, the global market high competition, and the resistance of pathogens against conventional materials. There is a dire need to develop cost-effective, environmentally friendly, and biodegradable materials to fight against bacteria using novel approaches and composites. Fused filament fabrication (FFF), also known as fused deposition modeling (FDM), is the most effective and novel fabrication method to develop these composites due to its various advantages. Compared to metallic particles alone, composites of different metallic particles have shown excellent antimicrobial properties against common Gram-positive and Gram-negative bacteria. This study investigates the antimicrobial properties of two sets of hybrid composite materials, i.e., Cu-PLA-SS and Cu-PLA-Al, are made using copper-enriched polylactide composite, one-time printed side by-side with stainless steel/PLA composite, and second-time with aluminum/PLA composite respectively. These materials have 90 wt.% of copper, 85 wt.% of SS 17-4, 65 wt.% of Al with a density of 4.7 g/cc, 3.0 g/cc, and 1.54 g/cc, respectively, and were fabricated side by side using the fused filament fabrication (FFF) printing technique. The prepared materials were tested against Gram-positive and Gram-negative bacteria such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), Salmonella Poona (S. Poona), and Enterococci during different time intervals (5 min, 10 min, 20 min, 1 h, 8 h, and 24 h). The results revealed that both samples showed excellent antimicrobial efficiency, and 99% reduction was observed after 10 min. Hence, three-dimensional (3D) printed polymeric composites enriched with metallic particles can be utilized for biomedical, food packaging, and tissue engineering applications. These composite materials can also provide sustainable solutions in public places and hospitals where the chances of touching surfaces are higher.
Collapse
Affiliation(s)
- Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Muhammad Hamza Nazir
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Muthanna Aziz
- Department of Mechanical Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Nazir MH, Al-Marzouqi AH, Ahmed W, Zaneldin E. The potential of adopting natural fibers reinforcements for fused deposition modeling: Characterization and implications. Heliyon 2023; 9:e15023. [PMID: 37089374 PMCID: PMC10113796 DOI: 10.1016/j.heliyon.2023.e15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Natural fibers or their derivatives have gained significant attention as green fillers or reinforcement materials due to their abundant availability, environment-friendly nature and biodegradability for sustainable development. Despite the availability of modern alternatives such as concrete, glass-fiber/resin composites, steel, and plastics, there is still considerable demand for naturally occurring based materials for different applications due to their low cost, durability, strength, heat, sound, and fire-resistance characteristics. 3D printing has provided a novel approach to the development and advancement of natural fiber-based composite materials, as well as an important platform for the advancement of biomass materials toward intelligentization and industrialization. The features of 3D printing, particularly fast prototyping and small start-up, allow the easy fabrication of materials for a wide range of applications. This review highlights the current progress and potential commercial applications of 3D printed composites reinforced with natural fibers or biomass. This study discussed that 3D printing technology can be effectively utilized for different applications, including producing electroactive papers, fuel cell membranes, adhesives, wastewater treatment, biosensors, and its potential applications in the automobile, building, and construction industries. The research in the literature showed that even if the field of 3D printing has advanced significantly, problems still need to be solved, such as material incompatibility and material cost. Further studies could be conducted to improve and adapt the methods to work with various materials. More effort should be put into developing affordable printer technologies and materials that work with these printers to broaden the applications for 3D printed objects.
Collapse
|
4
|
Siraj S, Al-Marzouqi AH, Iqbal MZ. Development and Mechano-Chemical Characterization of Polymer Composite Sheets Filled with Silica Microparticles with Potential in Printing Industry. Polymers (Basel) 2022; 14:polym14163351. [PMID: 36015609 PMCID: PMC9416559 DOI: 10.3390/polym14163351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Polymer composite sheets using a low-cost filler (local natural sand) and polymer (high-density polyethylene, HDPE) as a replacement of the traditionally used wood-fiber-based sheets for paper-based applications were developed. The sand/polymer composite sheets were prepared by melt extrusion in a melt blender followed by compression molding. The effects of varying particle size, concentration, and the use of a compatibilizer (polyethylene-grafted maleic anhydride) was studied on the mechano-chemical performance properties of the composite sheets such as morphology, thermal and mechanical properties, and wettability characteristics used in the printing industry. In terms of thermal stability, filler (sand) or compatibilizer addition did not alter the crystallization, melting, or degradation temperatures significantly, thereby promoting good thermal stability of the prepared sheets. Compatibilization improved anti-wetting property with water. Additionally, for the compatibilized sheets prepared from 25 µm sand particles, at 35 wt%, the contact angle with printing ink decreased from 44° to 38.30°, suggesting improved ink-wetting performance. A decrease in the elastic modulus was also observed with the addition of the compatibilizer, with comparable results to commercial stone paper. Results from this study will be considered as a first step towards understanding compatibility of local natural sand and polymers for paper-based application.
Collapse
|
5
|
Blown Composite Films of Low-Density/Linear-Low-Density Polyethylene and Silica Aerogel for Transparent Heat Retention Films and Influence of Silica Aerogel on Biaxial Properties. MATERIALS 2022; 15:ma15155314. [PMID: 35955248 PMCID: PMC9369760 DOI: 10.3390/ma15155314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022]
Abstract
Blown films based on low-density polyethylene (LDPE)/linear low-density polyethylene (LLDPE) and silica aerogel (SA; 0, 0.5, 1, and 1.5 wt.%) were obtained at the pilot scale. Good particle dispersion and distribution were achieved without thermo oxidative degradation. The effects of different SA contents (0.5–1.5 wt.%) were studied to prepare transparent-heat-retention LDPE/LLDPE films with improved material properties, while maintaining the optical performance. The optical characteristics of the composite films were analyzed using methods such as ultraviolet–visible spectroscopy and electron microscopy. Their mechanical characteristics were examined along the machine and transverse directions (MD and TD, respectively). The MD film performance was better, and the 0.5% composition exhibited the highest stress at break. The crystallization kinetics of the LDPE/LLDPE blends and their composites containing different SA loadings were investigated using differential scanning calorimetry, which revealed that the crystallinity of LDPE/LLDPE was increased by 0.5 wt.% of well-dispersed SA acting as a nucleating agent and decreased by agglomerated SA (1–1.5 wt.%). The LDPE/LLDPE/SA (0.5–1.5 wt.%) films exhibited improved infrared retention without compromising the visible light transmission, proving the potential of this method for producing next-generation heat retention films. Moreover, these films were biaxially drawn at 13.72 MPa, and the introduction of SA resulted in lower draw ratios in both the MD and TD. Most of the results were explained in terms of changes in the biaxial crystallization caused by the process or the influence of particles on the process after a systematic experimental investigation. The issues were strongly related to the development of blown nanocomposites films as materials for the packaging industry.
Collapse
|
6
|
Al-Mazrouei N, Ismail A, Ahmed W, Al-Marzouqi AH. ABS/Silicon Dioxide Micro Particulate Composite from 3D Printing Polymeric Waste. Polymers (Basel) 2022; 14:polym14030509. [PMID: 35160497 PMCID: PMC8837957 DOI: 10.3390/polym14030509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
In this paper, Acrylonitrile-Butadiene-Styrene matrix composites reinforced with Nano-silica dioxide particles were examined and prepared to study their mechanical properties. The composite sheets were pre-prepared using the hot extrusion process. Due to its wide characteristics, silica dioxide additions can strengthen the usability and mechanical features of composite thermoplastics and polymers. Furthermore, introducing silica dioxide as a filler in various attributes can help to maintain the smooth flow of sufficient powders, reduce caking, and manage viscoelasticity. Despite its advantages, 3D printing generates a significant amount of waste due to limited prints or destroyed support structures. ABS is an ideal material to use because it is a thermoplastic and amorphous polymer with outstanding thermal properties that is also applicable with the FFF (Fused Filament Fabrication) technique. The findings showed that increasing the silica dioxide content reduces the tensile strength to 22.4 MPa at 10 wt%. Toughness, ductility, and yield stress values of ABS/silica dioxide composites at 15 wt% increased, indicating that the composite material reinforced by the silica dioxide particles improved material characteristics. It is essential to consider the impact of recycling in polymer reinforcement with fillers. Furthermore, the improved mechanical qualities of the composite material encourages successful ABS recycling from 3D printing, as well as the possibility of reusing it in a similar application.
Collapse
Affiliation(s)
- Noura Al-Mazrouei
- Chemical and Petroleum Engineering Department, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates; (N.A.-M.); (A.I.); (A.H.A.-M.)
| | - Ahmed Ismail
- Chemical and Petroleum Engineering Department, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates; (N.A.-M.); (A.I.); (A.H.A.-M.)
| | - Waleed Ahmed
- Engineering Requirements Unit, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| | - Ali H. Al-Marzouqi
- Chemical and Petroleum Engineering Department, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates; (N.A.-M.); (A.I.); (A.H.A.-M.)
| |
Collapse
|
7
|
Dimensional Stability of 3D Printed Objects Made from Plastic Waste Using FDM: Potential Construction Applications. BUILDINGS 2021. [DOI: 10.3390/buildings11110516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Construction projects are often challenged by tight budgets and limited time and resources. Contractors are, therefore, looking for ways to become competitive by improving efficiency and using cost-effective materials. Using three-dimensional (3D) printing for shaping materials to produce cost-effective construction elements is becoming a feasible option to make contractors more competitive locally and globally. The process capabilities for 3D printers and related devices have been tightened in recent years with the booming of 3D printing industries and applications. Contractors are attempting to improve production skills to satisfy firm specifications and standards, while attempting to have costs within competitive ranges. The aim of this research is to investigate and test the production process capability (Cp) of 3D printers using fused deposition modeling (FDM) to manufacture 3D printed parts made from plastic waste for use in the construction of buildings with different infill structures and internal designs to reduce cost. This was accomplished by calculating the actual requirement capabilities of the 3D printers under consideration. The production capabilities and requirements of FDM printers are first examined to develop instructions and assumptions to assist in deciphering the characteristics of the 3D printers that will be used. Possible applications in construction are then presented. As an essential outcome of this study, it was noticed that the 3D printed parts made from plastic waste using FDM printers are less expensive than using traditional lightweight non-load bearing concrete hollow masonry blocks, hourdi slab hollow bocks, and concrete face bricks.
Collapse
|