1
|
Semitekolos D, Terzopoulou S, Charitidis C. Enhancing Carbon Fiber-Reinforced Polymers' Performance and Reparability Through Core-Shell Rubber Modification and Patch Repair Techniques. Polymers (Basel) 2025; 17:407. [PMID: 39940608 PMCID: PMC11820729 DOI: 10.3390/polym17030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Carbon fiber-reinforced polymers (CFRPs) are widely used in high-performance applications, but their inherent brittleness and susceptibility to impact damage remain critical challenges. This study investigated the effect of core-shell rubber (CSR) particles as impact modifiers on the mechanical properties of CFRPs and evaluated patch repair techniques for damaged CFRP panels. Mechanical tests, including flexural, tensile, short-beam, fracture toughness, and impact tests, were conducted on reference and CSR-modified specimens to assess their structural performance. The CSR-modified samples demonstrated significant improvements in energy absorption and fracture toughness, with a 50% increase in impact strength and up to 181% improvement in absorbed energy during Mode I fracture testing. However, slight reductions in flexural and tensile strengths were observed due to the softening effect of CSR particles. Fracture surface analysis revealed distinct failure mechanisms, with Scanning Electron Microscopy imaging showing consistent fiber pull-out behavior in tensile and flexural tests, but more stable delamination propagation in CSR-modified specimens during short-beam shear tests. Patch repair effectiveness was assessed through drop-weight impact tests on damaged panels repaired with patches containing CSRs of two thicknesses. Patches of equal thickness to the damaged panel successfully restored structural integrity and enhanced energy absorption by 37% compared with the reference samples, while thinner patches (as a suggestion to reduce production costs) failed to withstand impact loads effectively. Non-destructive testing (NDT) via ultrasonic C-scans confirmed reduced delamination and damage depth in CSR-modified repaired panels, validating the toughening effect of CSR particles. These findings demonstrate the potential of CSR-modified resins to improve CFRPs' performance and provide effective repair solutions for extending the service life of damaged composite structures, rendering them especially suitable for applications demanding high damage tolerance and durability, including aerospace structures, automotive body panels, and energy-absorbing crash components.
Collapse
Affiliation(s)
| | | | - Costas Charitidis
- RNANO Lab—Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou st., Zografos, GR-15773 Athens, Greece
| |
Collapse
|
2
|
Gargiuli JF, Quino G, Board R, Griffith JC, Shaffer MSP, Trask RS, Hamerton I. Examining the Quasi-Static Uniaxial Compressive Behaviour of Commercial High-Performance Epoxy Matrices. Polymers (Basel) 2023; 15:4022. [PMID: 37836071 PMCID: PMC10574947 DOI: 10.3390/polym15194022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Four commercial high-performance aerospace aromatic epoxy matrices, CYCOM®890, CYCOM®977-2, PR520, and PRISM EP2400, were cured to a standardised 2 h, 180 °C cure cycle and evaluated in quasi-static uniaxial compression, as well as by dynamic scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The thermoplastic toughened CYCOM®977-2 formulation displayed an overall increase in true axial stress values across the entire stress-strain curve relative to the baseline CYCOM®890 sample. The particle-toughened PR520 sample exhibited an overall decrease in true axial stress values past the yield point of the material. The PRISM EP2400 resin, with combined toughening agents, led to true axial stress values across the entire plastic region of the stress-strain curve, which were in line with the stress values observed with the CYCOM®890 material. Interestingly, for all formulations, the dilation angles (associated with the volume change during plastic deformation), recorded at 0.3 plastic strain, were close to 0°, with the variations reflecting the polymer structure. Compression data collected for this series of commercial epoxy resins are in broad agreement with a selection of model epoxy resins based on di- and tetra-functional monomers, cured with polyamines or dicarboxylic anhydrides. However, the fully formulated resins demonstrate a significantly higher compressive modulus than the model resins, albeit at the expense of yield stress.
Collapse
Affiliation(s)
- J. F. Gargiuli
- Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, Faculty of Science and Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK; (J.F.G.); (G.Q.); (R.B.); (J.C.G.); (R.S.T.)
| | - G. Quino
- Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, Faculty of Science and Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK; (J.F.G.); (G.Q.); (R.B.); (J.C.G.); (R.S.T.)
- Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - R. Board
- Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, Faculty of Science and Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK; (J.F.G.); (G.Q.); (R.B.); (J.C.G.); (R.S.T.)
| | - J. C. Griffith
- Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, Faculty of Science and Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK; (J.F.G.); (G.Q.); (R.B.); (J.C.G.); (R.S.T.)
| | - M. S. P. Shaffer
- Department of Materials and Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - R. S. Trask
- Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, Faculty of Science and Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK; (J.F.G.); (G.Q.); (R.B.); (J.C.G.); (R.S.T.)
| | - I. Hamerton
- Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, Faculty of Science and Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK; (J.F.G.); (G.Q.); (R.B.); (J.C.G.); (R.S.T.)
| |
Collapse
|
3
|
Tretyakov IV, Petrova TV, Kireynov AV, Korokhin RA, Platonova EO, Alexeeva OV, Gorbatkina YA, Solodilov VI, Yurkov GY, Berlin AA. Fracture of Epoxy Matrixes Modified with Thermo-Plastic Polymers and Winding Glass Fibers Reinforced Plastics on Their Base under Low-Velocity Impact Condition. Polymers (Basel) 2023; 15:2958. [PMID: 37447603 DOI: 10.3390/polym15132958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The work is aimed at studying the impact resistance of epoxy oligomer matrices (EO) modified with polysulfone (PSU) or polyethersulfone (PES) and glass fibers reinforced plastics (GFRP) based on them under low-velocity impact conditions. The concentration dependences of strength and fracture energy of modified matrices and GFRP were determined. It has been determined that the type of concentration curves of the fracture energy of GFRP depends on the concentration and type of the modifying polymer. It is shown that strength σ and fracture energy EM of thermoplastic-modified epoxy matrices change little in the concentration range from 0 to 15 wt.%. However, even with the introduction of 20 wt.% PSU into EO, the strength increases from 164 MPa to 200 MPa, and the fracture energy from 32 kJ/m2 to 39 kJ/m2. The effect of increasing the strength and fracture energy of modified matrices is retained in GFRP. The maximum increase in shear strength (from 72 MPa to 87 MPa) is observed for GFRP based on the EO + 15 wt.% PSU matrix. For GFRP based on EO + 20 wt.% PES, the shear strength is reduced to 69 MPa. The opposite effect is observed for the EO + 20 wt.% PES matrix, where the strength value decreases from 164 MPa to 75 MPa, and the energy decreases from 32 kJ/m2 to 10 kJ/m2. The reference value for the fracture energy of GFRP 615 is 741 kJ/m2. The maximum fracture energy for GFRP is based on EO + 20 wt.% PSU increases to 832 kJ/m2 for GFRP based on EO + 20 wt.% PES-up to 950 kJ/m2. The study of the morphology of the fracture surfaces of matrices and GFRP confirmed the dependence of impact characteristics on the microstructure of the modified matrices and the degree of involvement in the process of crack formation. The greatest effect is achieved for matrices with a phase structure "thermoplastic matrix-epoxy dispersion." Correlations between the fracture energy and strength of EO + PES matrices and GFRP have been established.
Collapse
Affiliation(s)
- Ilya V Tretyakov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tuyara V Petrova
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Aleksey V Kireynov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Roman A Korokhin
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena O Platonova
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, 119334 Moscow, Russia
| | - Olga V Alexeeva
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia A Gorbatkina
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vitaliy I Solodilov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gleb Yu Yurkov
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander Al Berlin
- N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Structure and Properties of Epoxy Polysulfone Systems Modified with an Active Diluent. Polymers (Basel) 2022; 14:polym14235320. [PMID: 36501712 PMCID: PMC9736303 DOI: 10.3390/polym14235320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An epoxy resin modified with polysulfone (PSU) and active diluent furfuryl glycidyl ether (FGE) was studied. Triethanolaminotitanate (TEAT) and iso-methyltetrahydrophthalic anhydride (iso-MTHPA) were used as curing agents. It is shown that during the curing of initially homogeneous mixtures, heterogeneous structures are formed. The type of these structures depends on the concentration of active diluent and the type of hardener. The physico-mechanical properties of the hybrid matrices are determined by the structure formed. The maximum resistance to a growing crack is provided by structures with a thermoplastic-enriched matrix-interpenetrating structures. The main mechanism for increasing the energy of crack propagation is associated with the implementation of microplasticity of extended phases enriched in polysulfone and their involvement in the fracture process.
Collapse
|
5
|
Glaskova-Kuzmina T, Stankevics L, Tarasovs S, Sevcenko J, Špaček V, Sarakovskis A, Zolotarjovs A, Shmits K, Aniskevich A. Effect of Core-Shell Rubber Nanoparticles on the Mechanical Properties of Epoxy and Epoxy-Based CFRP. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7502. [PMID: 36363094 PMCID: PMC9656058 DOI: 10.3390/ma15217502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The aim of the research was to estimate the effect of core-shell rubber (CSR) nanoparticles on the tensile properties, fracture toughness, and glass transition temperature of the epoxy and epoxy-based carbon fiber reinforced polymer (CFRP). Three additives containing CSR nanoparticles were used for the research resulting in a filler fraction of 2-6 wt.% in the epoxy resin. It was experimentally confirmed that the effect of the CSR nanoparticles on the tensile properties of the epoxy resin was notable, leading to a reduction of 10-20% in the tensile strength and elastic modulus and an increase of 60-108% in the fracture toughness for the highest filler fraction. The interlaminar fracture toughness of CFRP was maximally improved by 53% for ACE MX 960 at CSR content 4 wt.%. The glass transition temperature of the epoxy was gradually improved by 10-20 °C with the increase of CSR nanoparticles for all of the additives. A combination of rigid and soft particles could simultaneously enhance both the tensile properties and the fracture toughness, which cannot be achieved by the single-phase particles independently.
Collapse
Affiliation(s)
| | - Leons Stankevics
- Institute for Mechanics of Materials, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
| | - Sergejs Tarasovs
- Institute for Mechanics of Materials, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
| | - Jevgenijs Sevcenko
- Institute for Mechanics of Materials, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
| | - Vladimir Špaček
- Synpo, S. K. Neumanna 1316, 530 02 Pardubice, Czech Republic
| | | | | | | | - Andrey Aniskevich
- Institute for Mechanics of Materials, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
| |
Collapse
|
6
|
Maccaferri E, Ortolani J, Mazzocchetti L, Benelli T, Brugo TM, Zucchelli A, Giorgini L. New Application Field of Polyethylene Oxide: PEO Nanofibers as Epoxy Toughener for Effective CFRP Delamination Resistance Improvement. ACS OMEGA 2022; 7:23189-23200. [PMID: 35847344 PMCID: PMC9281329 DOI: 10.1021/acsomega.2c01189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Delamination is the most severe weakness affecting all composite materials with a laminar structure. Nanofibrous mat interleaving is a smart way to increase the interlaminar fracture toughness: the use of thermoplastic polymers, such as poly(ε-caprolactone) and polyamides (Nylons), as nonwovens is common and well established. Here, electrospun polyethylene oxide (PEO) nanofibers are proposed as reinforcing layers for hindering delamination in epoxy-based carbon fiber-reinforced polymer (CFRP) laminates. While PEO nanofibers are well known and successfully applied in medicine and healthcare, to date, their use as composite tougheners is undiscovered, resulting in the first investigation in this application field. The PEO-modified CFRP laminate shows a significant improvement in the interlaminar fracture toughness under Mode I loading: +60% and +221% in G I,C and G I,R, respectively. The high matrix toughening is confirmed by the crack path analysis, showing multiple crack planes, and by the delamination surfaces, revealing that extensive phase separation phenomena occur. Under Mode II loading, the G II enhancement is almost 20%. Despite a widespread phase separation occurring upon composite curing, washings in water do not affect the surface delamination morphology, suggesting a sufficient humidity resistance of the PEO-modified laminate. Moreover, it almost maintains both the original stiffness and glass transition temperature (T g), as assessed via three-point bending and dynamic mechanical analysis tests. The achieved results pave the way for using PEO nanofibrous membranes as a new effective solution for hindering delamination in epoxy-based composite laminates.
Collapse
Affiliation(s)
- Emanuele Maccaferri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Jacopo Ortolani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Laura Mazzocchetti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Tiziana Benelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Tommaso Maria Brugo
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
- Department
of Industrial Engineering, University of
Bologna, Viale Risorgimento
2, Bologna 40136, Italy
| | - Andrea Zucchelli
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
- Department
of Industrial Engineering, University of
Bologna, Viale Risorgimento
2, Bologna 40136, Italy
| | - Loris Giorgini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| |
Collapse
|