1
|
Sun YS, Jian YQ, Yang ST, Chen CY, Lin JM. Morphologies of Surface Perforations and Parallel Cylinders Coexisting in Terraced Films of Block Copolymer/Homopolymer Blends with Oxygen Plasma Etching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16284-16293. [PMID: 37934122 DOI: 10.1021/acs.langmuir.3c01784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
This study has demonstrated how oxygen plasma etching carves surface structures for thin films of polystyrene-block-poly(methyl methacrylate)/homopolystyrene blends. By tuning the weight-fraction ratio, blend films form perforations and cylinders on the SiOx/Si substrate. Since perforations exist only on the free surface and substrate interface, short exposure to oxygen plasma to quickly etch the PMMA component produces distorted hexagonal arrays of nanodots on the free surface. The interior of the blend films forms polygrain micro-structures composed of parallel cylinders with an in-plane random orientation. Oxygen plasma etching imposed on the fractured surfaces results in five morphologies: (i) distorted hexagonal arrays of nanoholes, (ii) layer-by-layer stacks, (iii) zigzag-like arrays, (iv) intertwined rectangular arrays of nanodots and nanoholes, and (v) intertwined parallelogram arrays of nanodots and nanoholes. The morphologies suggest synergic effects of grain orientations, stresses, spatial confinement, local segregation of chains, and etching kinetics on the terraced films with oxygen plasma etching.
Collapse
Affiliation(s)
- Ya-Sen Sun
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shin-Tung Yang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Yu Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
2
|
Junisu BA, Sun YS. Hierarchical Surface Instability in Polymer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15249-15259. [PMID: 37862459 DOI: 10.1021/acs.langmuir.3c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
This study demonstrates hierarchical instabilities in thin films. The hierarchical instabilities display three morphological characteristics: (1) windmill-like patterns at the macroscale, (2) Bénard cells and striations at the microscale, and (3) holes at the mesoscale. Such hierarchical instabilities occurred when spin coating was performed on high-volatile solutions under a high relative humidity (RH) but were suppressed when spin coating was performed on low-volatile solutions regardless of the RH. The high-volatile solutions comprise poly(4-vinylpyridine) (P4VP) in methanol or ethanol. The low-volatility solutions comprise P4VP in propanol or butanol. P4VP molecular weights, P4VP concentrations, spin rates, and film thicknesses are not vital factors in forming hierarchical instability in spin-coated P4VP films. Instead, the formation of hierarchical instabilities depends on the RH and solvent types. Namely, the hierarchical instabilities are driven by Bénard-Marangoni convection, water vapor condensation, and disturbance of spin-up and spin-off stages during spin coating of highly volatile solutions under high RH. Mechanisms of hierarchical instabilities are interpreted in detail.
Collapse
Affiliation(s)
- Belda Amelia Junisu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Ya-Sen Sun
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
3
|
Junisu BA, Ching-Ya Chang I, Sun YS. Film Instability Induced by Swelling and Drying. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13009-13020. [PMID: 36263886 DOI: 10.1021/acs.langmuir.2c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Poly(2-vinyl pyridine), P2VP, films display a surface pattern of craters in a dried state after being immersed in aqueous solutions containing HAuCl4 and its mixtures with low contents of K2CO3. The morphologies of craters indicate that the formation of craters involves three stages through film blistering and drying: (i) the permeability of water and solutes to swell P2VP films, (ii) partial wetting of liquid droplets near the substrate interface in the presence of the P2VP film, and (iii) evaporation-driven flows. The three stages produce the swelling pressure, Laplace pressure, and interplays among capillary flows, Marangoni flows, and pinning effects, respectively, by which craters of different dimensions and morphologies are obtained. The first stage softens the P2VP films and produces swelling pressure. This stage relies on interactions between AuCl4- ions, water, and protonated P2VP chains. The second stage produces liquid droplets inside the film and near the substrate interface. The surface tensions of those liquid droplets at contact lines deform swollen P2VP films. Changing film thicknesses or substrate types alters craters' lateral dimension and depth. The results indicate that film thicknesses and substrate interface energies influence the shape and dimension of liquid droplets on the substrate interface. The third stage determines morphologies of craters through interplays among capillary flows, Marangoni flows, and pinning/depinning events.
Collapse
Affiliation(s)
- Belda Amelia Junisu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan32001, Taiwan
| | - Iris Ching-Ya Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan32001, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan32001, Taiwan
| |
Collapse
|
4
|
Junisu BA, Chang ICY, Lin CC, Sun YS. Surface Wrinkling on Polymer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3907-3916. [PMID: 35298168 DOI: 10.1021/acs.langmuir.2c00156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of gold precursor solutions are prepared by dissolving HAuCl4 and its mixtures with K2CO3 of different contents in deionized (DI) water. Neat HAuCl4 predominately forms AuCl4- ions in an aqueous solution. In the presence of K2CO3, AuCl4- ions hydrolyze to form [AuCl4-x(OH)x]- complex ions. Increasing the content of K2CO3 in a gold precursor solution increases the content of [AuCl4-x(OH)x]- complex ions and decreases the content of AuCl4- ions. Poly(4-vinyl pyridine) (P4VP) films of two different molecular weights are deposited on SiOx/Si by spin coating, by which the thicknesses are controlled by polymer weight fractions in butanol. Those P4VP films form periodic wrinkles when immersed in aqueous solutions, followed by drying. The surface wrinkling is induced by swelling pressure that overwhelms the mechanical property of the P4VP film. The periodicity and amplitude of wrinkles grown on the P4VP films strongly correlate with initial thickness, AuCl4- ion content, and residual stress.
Collapse
Affiliation(s)
- Belda Amelia Junisu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Iris Ching-Ya Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Chi Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
5
|
Hong JW, Chang JH, Hung HH, Liao YP, Jian YQ, Chang ICY, Huang TY, Nelson A, Lin IM, Chiang YW, Sun YS. Chain Length Effects of Added Homopolymers on the Phase Behavior in Blend Films of a Symmetric, Weakly Segregated Polystyrene- block-poly(methyl methacrylate). Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Wen Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Jung-Hong Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Hsiang-Ho Hung
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yin-Ping Liao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Iris Ching-Ya Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Yen Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - I-Ming Lin
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
6
|
Alsubaie FM, Alothman OY, Fouad H, Mourad AHI. ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization. Polymers (Basel) 2021; 14:116. [PMID: 35012138 PMCID: PMC8747352 DOI: 10.3390/polym14010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The aqueous Cu(0)-mediated reversible deactivation radical polymerization (RDRP) of triblock copolymers with two block sequences at 0.0 °C is reported herein. Well-defined triblock copolymers initiated from PHEAA or PDMA, containing (A) 2-hydroxyethyl acrylamide (HEAA), (B) N-isopropylacrylamide (NIPAM) and (C) N, N-dimethylacrylamide (DMA), were synthesized. The ultrafast one-pot synthesis of sequence-controlled triblock copolymers via iterative sequential monomer addition after full conversion, without any purification steps throughout the monomer additions, was performed. The narrow dispersities of the triblock copolymers proved the high degree of end-group fidelity of the starting macroinitiator and the absence of any significant undesirable side reactions. Controlled chain length and extremely narrow molecular weight distributions (dispersity ~1.10) were achieved, and quantitative conversion was attained in as little as 52 min. The full disproportionation of CuBr in the presence of Me6TREN in water prior to both monomer and initiator addition was crucially exploited to produce a well-defined ABC-type triblock copolymer. In addition, the undesirable side reaction that could influence the living nature of the system was investigated. The ability to incorporate several functional monomers without affecting the living nature of the polymerization proves the versatility of this approach.
Collapse
Affiliation(s)
- Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Othman Y. Alothman
- Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Hassan Fouad
- Applied Medical Science Department, Community College, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo 11792, Egypt
| | - Abdel-Hamid I. Mourad
- Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirate University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Centre, United Arab Emirate University, Al Ain P.O. Box 15551, United Arab Emirates
- Mechanical Design Department, Faculty of Engineering, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
7
|
Hong JW, Jian YQ, Liao YP, Hung HH, Huang TY, Nelson A, Tsao IY, Wu CM, Sun YS. Distributions of Deuterated Polystyrene Chains in Perforated Layers of Blend Films of a Symmetric Polystyrene -block-poly(methyl methacrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13046-13058. [PMID: 34696591 DOI: 10.1021/acs.langmuir.1c02132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have examined the spatial distributions of polymer chains in blend films of weakly segregated polystyrene-block-poly(methyl methacrylate) [P(S-b-MMA)] and deuterated polystyrene (dPS). By fine-tuning the composition (ϕPS+dPS = 63.8 vol %) of the total PS/dPS component and annealing temperature (230 and 270 °C), P(S-b-MMA)/dPS blend films mainly form perforated layers with a parallel orientation (hereafter PLs//). The distributions of dPS in PLs// were probed by grazing-incidence small-angle neutron scattering (GISANS) and time-of-flight neutron reflectivity (ToF-NR). GISANS and ToF-NR results offer evidence that dPS chains preferentially locate at the free surface and within the PS layers for blend films that were annealed at 230 °C. Upon annealing at 270 °C, dPS chains distribute within PS layers and perforated PMMA layers. Nevertheless, dPS chains still retain a surface preference for thin films. In contrast, such surface segregation of dPS chains is prohibited for thick films when annealed at 270 °C.
Collapse
Affiliation(s)
- Jia-Wen Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yin-Ping Liao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Hsiang-Ho Hung
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Yen Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - I-Yu Tsao
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|