1
|
Kumi M, Chen T, Zhang Z, Wang A, Li G, Hou Z, Cheng T, Wang J, Wang T, Li P. Integration of Hydrogels and 3D Bioprinting Technologies for Chronic Wound Healing Management. ACS Biomater Sci Eng 2024; 10:5995-6016. [PMID: 39228365 DOI: 10.1021/acsbiomaterials.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The integration of hydrogel-based bioinks with 3D bioprinting technologies presents an innovative approach to chronic wound management, which is particularly challenging to treat because of its multifactorial nature and high risk of complications. Using precise deposition techniques, 3D bioprinting significantly alters traditional wound care paradigms by enabling the fabrication of patient-specific wound dressings that imitate natural tissue properties. Hydrogels are notably beneficial for these applications because of their abundant water content and mechanical properties, which promote cell viability and pathophysiological processes of wound healing, such as re-epithelialization and angiogenesis. This article reviews key 3D printing technologies and their significance in enhancing the structural and functional outcomes of wound-care solutions. Challenges in bioink viscosity, cell viability, and printability are addressed, along with discussions on the cross-linking and mechanical stability of the constructs. The potential of 3D bioprinting to revolutionize chronic wound management rests on its capacity to generate remedies that expedite healing and minimize infection risks. Nevertheless, further studies and clinical trials are necessary to advance these therapies from laboratory to clinical use.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tianyi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zhengheng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - An Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Gangfeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zishuo Hou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tian Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| |
Collapse
|
2
|
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers (Basel) 2024; 16:3254. [PMID: 39409876 PMCID: PMC11476321 DOI: 10.3390/cancers16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Short peptides have been coming around as a strong weapon in the fight against cancer on all fronts-in immuno-, chemo-, and radiotherapy, and also in combinatorial approaches. Moreover, short peptides have relevance in cancer imaging or 3D culture. Thanks to the natural 'smart' nature of short peptides, their unique structural features, as well as recent progress in biotechnological and bioinformatics development, short peptides are playing an enormous role in evolving cutting-edge strategies. Self-assembling short peptides may create excellent structures to stimulate cytotoxic immune responses, which is essential for cancer immunotherapy. Short peptides can help establish versatile strategies with high biosafety and effectiveness. Supramolecular short peptide-based cancer vaccines entered clinical trials. Peptide assemblies can be platforms for the delivery of antigens, adjuvants, immune cells, and/or drugs. Short peptides have been unappreciated, especially in the vaccine aspect. Meanwhile, they still hide the undiscovered unlimited potential. Here, we provide a timely update on this highly active and fast-evolving field.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Inorganic and Ecological Chemistry, Łódź University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland;
| | | |
Collapse
|
3
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
5
|
Md Fadilah NI, Shahabudin NA, Mohd Razif RA, Sanyal A, Ghosh A, Baharin KI, Ahmad H, Maarof M, Motta A, Fauzi MB. Discovery of bioactive peptides as therapeutic agents for skin wound repair. J Tissue Eng 2024; 15:20417314241280359. [PMID: 39398382 PMCID: PMC11468004 DOI: 10.1177/20417314241280359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/19/2024] [Indexed: 10/15/2024] Open
Abstract
Short sequences of amino acids called peptides have a wide range of biological functions and the potential to treat a number of diseases. Bioactive peptides can be derived from different sources, including marine organisms, and synthetic design, making them versatile candidates for production of therapeutic agents. Their therapeutic effects span across areas such as antimicrobial activity, cells proliferation and migration, synthesis of collagen, and more. This current review explores the fascinating realm of bioactive peptides as promising therapeutic agents for skin wound healing. This review focuses on the multifaceted biological effects of specific peptides, shedding light on their potential to revolutionize the field of dermatology and regenerative medicine. It delves into how these peptides stimulate collagen synthesis, inhibit inflammation, and accelerate tissue regeneration, ultimately contributing to the effective repair of skin wounds. The findings underscore the significant role several types of bioactive peptides can play in enhancing wound healing processes and offer promising insights for improving the quality of life for individuals with skin injuries and dermatological conditions. The versatility of peptides allows for the development of tailored treatments catering to specific wound types and patient needs. As continuing to delve deeper into the realm of bioactive peptides, there is immense potential for further exploration and innovation. Future endeavors may involve the optimization of peptide formulations, elucidation of underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurul Aqilah Shahabudin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Raniya Adiba Mohd Razif
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Arka Sanyal
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | - Anushikha Ghosh
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Haslina Ahmad
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Majkowska A, Inostroza-Brito KE, Gonzalez M, Redondo-Gómez C, Rice A, Rodriguez-Cabello JC, Del Rio Hernandez AE, Mata A. Peptide-Protein Coassemblies into Hierarchical and Bioactive Tubular Membranes. Biomacromolecules 2023; 24:4419-4429. [PMID: 36696687 PMCID: PMC10565817 DOI: 10.1021/acs.biomac.2c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/16/2022] [Indexed: 01/26/2023]
Abstract
Multicomponent self-assembly offers opportunities for the design of complex and functional biomaterials with tunable properties. Here, we demonstrate how minor modifications in the molecular structures of peptide amphiphiles (PAs) and elastin-like recombinamers (ELs) can be used to generate coassembling tubular membranes with distinct structures, properties, and bioactivity. First, by introducing minor modifications in the charge density of PA molecules (PAK2, PAK3, PAK4), different diffusion-reaction processes can be triggered, resulting in distinct membrane microstructures. Second, by combining different types of these PAs prior to their coassembly with ELs, further modifications can be achieved, tuning the structures and properties of the tubular membranes. Finally, by introducing the cell adhesive peptide RGDS in either the PA or EL molecules, it is possible to harness the different diffusion-reaction processes to generate tubular membranes with distinct bioactivities. The study demonstrates the possibility to trigger and achieve minor but crucial differences in coassembling processes and tune material structure and bioactivity. The study demonstrates the possibility to use minor, yet crucial, differences in coassembling processes to tune material structure and bioactivity.
Collapse
Affiliation(s)
- Anna Majkowska
- William
Harvey Research Institute, Queen Mary University
of London, London EC1M 6BQ, U.K.
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Karla E. Inostroza-Brito
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Mariel Gonzalez
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Carlos Redondo-Gómez
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Alistair Rice
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
| | | | | | - Alvaro Mata
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- School
of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Biodiscovery
Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
- Department
of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
7
|
Yang Z, Chen L, Liu J, Zhuang H, Lin W, Li C, Zhao X. Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301849. [PMID: 36942893 DOI: 10.1002/adma.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Short designer self-assembling peptide (dSAP) biomaterials are a new addition to the hemostat group. It may provide a diverse and robust toolbox for surgeons to integrate wound microenvironment with much safer and stronger hemostatic capacity than conventional materials and hemostatic agents. Especially in noncompressible torso hemorrhage (NCTH), diffuse mucosal surface bleeding, and internal medical bleeding (IMB), with respect to the optimal hemostatic formulation, dSAP biomaterials are the ingenious nanofiber alternatives to make bioactive neural scaffold, nasal packing, large mucosal surface coverage in gastrointestinal surgery (esophagus, gastric lesion, duodenum, and lower digestive tract), epicardiac cell-delivery carrier, transparent matrix barrier, and so on. Herein, in multiple surgical specialties, dSAP-biomaterial-based nano-hemostats achieve safe, effective, and immediate hemostasis, facile wound healing, and potentially reduce the risks in delayed bleeding, rebleeding, post-operative bleeding, or related complications. The biosafety in vivo, bleeding indications, tissue-sealing quality, surgical feasibility, and local usability are addressed comprehensively and sequentially and pursued to develop useful surgical techniques with better hemostatic performance. Here, the state of the art and all-round advancements of nano-hemostatic approaches in surgery are provided. Relevant critical insights will inspire exciting investigations on peptide nanotechnology, next-generation biomaterials, and better promising prospects in clinics.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hua Zhuang
- Department of Ultrasonography, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Women and Children Diseases of the Ministry of Education, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
8
|
Cardoso P, Appiah Danso S, Hung A, Dekiwadia C, Pradhan N, Strachan J, McDonald B, Firipis K, White JF, Aburto-Medina A, Conn CE, Valéry C. Rational design of potent ultrashort antimicrobial peptides with programmable assembly into nanostructured hydrogels. Front Chem 2023; 10:1009468. [PMID: 36712988 PMCID: PMC9881724 DOI: 10.3389/fchem.2022.1009468] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
Microbial resistance to common antibiotics is threatening to cause the next pandemic crisis. In this context, antimicrobial peptides (AMPs) are receiving increased attention as an alternative approach to the traditional small molecule antibiotics. Here, we report the bi-functional rational design of Fmoc-peptides as both antimicrobial and hydrogelator substances. The tetrapeptide Fmoc-WWRR-NH2-termed Priscilicidin-was rationally designed for antimicrobial activity and molecular self-assembly into nanostructured hydrogels. Molecular dynamics simulations predicted Priscilicidin to assemble in water into small oligomers and nanofibrils, through a balance of aromatic stacking, amphiphilicity and electrostatic repulsion. Antimicrobial activity prediction databases supported a strong antimicrobial motif via sequence analogy. Experimentally, this ultrashort sequence showed a remarkable hydrogel forming capacity, combined to a potent antibacterial and antifungal activity, including against multidrug resistant strains. Using a set of biophysical and microbiology techniques, the peptide was shown to self-assemble into viscoelastic hydrogels, as a result of assembly into nanostructured hexagonal mesophases. To further test the molecular design approach, the Priscilicidin sequence was modified to include a proline turn-Fmoc-WPWRR-NH2, termed P-Priscilicidin-expected to disrupt the supramolecular assembly into nanofibrils, while predicted to retain antimicrobial activity. Experiments showed P-Priscilicidin self-assembly to be effectively hindered by the presence of a proline turn, resulting in liquid samples of low viscosity. However, assembly into small oligomers and nanofibril precursors were evidenced. Our results augur well for fast, adaptable, and cost-efficient antimicrobial peptide design with programmable physicochemical properties.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia,School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Samuel Appiah Danso
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia,Materials Characterisation and Modelling, Manufacturing, CSIRO, Clayton, VIC, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, VIC, Australia
| | - Nimish Pradhan
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia
| | - Jamie Strachan
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia,School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Brody McDonald
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia
| | - Kate Firipis
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Jacinta F. White
- Materials Characterisation and Modelling, Manufacturing, CSIRO, Clayton, VIC, Australia
| | | | - Charlotte E. Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Céline Valéry
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia,*Correspondence: Céline Valéry,
| |
Collapse
|
9
|
Bassan GA, Marchesan S. Peptide-Based Materials That Exploit Metal Coordination. Int J Mol Sci 2022; 24:ijms24010456. [PMID: 36613898 PMCID: PMC9820281 DOI: 10.3390/ijms24010456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metal-ion coordination has been widely exploited to control the supramolecular behavior of a variety of building blocks into functional materials. In particular, peptides offer great chemical diversity for metal-binding modes, combined with inherent biocompatibility and biodegradability that make them attractive especially for medicine, sensing, and environmental remediation. The focus of this review is the last 5 years' progress in this exciting field to conclude with an overview of the future directions that this research area is currently undertaking.
Collapse
|
10
|
Boyd-Moss M, Firipis K, Quigley A, Rifai A, Cichocki A, Whitty S, Ngan C, Dekiwadia C, Long B, Nisbet DR, Kapsa R, Williams RJ. Hybrid Self‐Assembling Peptide/Gelatin Methacrylate (GelMA) Bioink Blend for Improved Bioprintability and Primary Myoblast Response. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Mitchell Boyd-Moss
- BioFab3D Aikenhead Centre for Medical Discovery St Vincent's Hospital Melbourne Fitzroy 3065 Australia
- School of Engineering RMIT University Melbourne VIC 3000 Australia
- iMPACT School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
| | - Kate Firipis
- BioFab3D Aikenhead Centre for Medical Discovery St Vincent's Hospital Melbourne Fitzroy 3065 Australia
- School of Engineering RMIT University Melbourne VIC 3000 Australia
| | - Anita Quigley
- BioFab3D Aikenhead Centre for Medical Discovery St Vincent's Hospital Melbourne Fitzroy 3065 Australia
- School of Engineering RMIT University Melbourne VIC 3000 Australia
| | - Aaqil Rifai
- iMPACT School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
| | - Artur Cichocki
- BioFab3D Aikenhead Centre for Medical Discovery St Vincent's Hospital Melbourne Fitzroy 3065 Australia
- School of Engineering RMIT University Melbourne VIC 3000 Australia
| | - Sarah Whitty
- BioFab3D Aikenhead Centre for Medical Discovery St Vincent's Hospital Melbourne Fitzroy 3065 Australia
- School of Engineering RMIT University Melbourne VIC 3000 Australia
| | - Catherine Ngan
- BioFab3D Aikenhead Centre for Medical Discovery St Vincent's Hospital Melbourne Fitzroy 3065 Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and MicroAnalysis Facility RMIT University Melbourne VIC 3000 Australia
| | - Benjamin Long
- Faculty of Science and Technology Federation University Mt. Helen VIC 3350 Australia
| | - David R. Nisbet
- BioFab3D Aikenhead Centre for Medical Discovery St Vincent's Hospital Melbourne Fitzroy 3065 Australia
- The Graeme Clark Institute The University of Melbourne Melbourne 3000 Australia
- Department of Biomedical Engineering Faculty of Engineering and Information Technology The University of Melbourne Melbourne 3000 Australia
- Research School of Engineering Australian National University Canberra ACT 0200 Australia
| | - Robert Kapsa
- BioFab3D Aikenhead Centre for Medical Discovery St Vincent's Hospital Melbourne Fitzroy 3065 Australia
- School of Engineering RMIT University Melbourne VIC 3000 Australia
| | - Richard J. Williams
- BioFab3D Aikenhead Centre for Medical Discovery St Vincent's Hospital Melbourne Fitzroy 3065 Australia
- iMPACT School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
| |
Collapse
|