1
|
Shi Y, Wang Z, Xu W, Yu X, Gao B, Zhou X, Chen J, Jia K, Cheang LH, Tam MS, Wang H, Zheng X, Wu T. Preparation and osteogenesis of a multiple crosslinking silk fibroin/carboxymethyl chitosan/sodium alginate composite scaffold loading with mesoporous silica/poly (lactic acid-glycolic acid) microspheres. J Biomater Appl 2025; 39:578-591. [PMID: 39264258 DOI: 10.1177/08853282241281439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Large bone defect repair is a striking challenge in orthopedics. Currently, inorganic-organic composite scaffolds are considered as a promising approach to these bone regeneration. Silicon ions (Si4+) are bioactive and beneficial to bone regeneration and Si4+-containing inorganic mesoporous silica (MS) can effectively load drugs for bone repair. To better control the release of drug, we prepared biodegradable MS/PLGA (MP) microspheres. MP loaded organic silk fibroin/carboxymethyl chitosan/sodium alginate (MP/SF/CMCS/SA) composite scaffolds were further constructed by genipin and Ca2+ crosslinking. All MP/SF/CMCS/SA scaffolds had good swelling ability, degradation rate and high porosity. The incorporation of 1% MP significantly enhanced the compressive strength of composite scaffolds. Besides, MP loaded scaffold showed a sustained release of Si4+ and Ca2+. Moreover, the release rate of rhodamine (a model drug) of MP/SF/CMCS/SA scaffolds was obviously lower than that of MP. When culturing with rat bone marrow mesenchymal stem cells, scaffolds with 1% MP displayed good proliferation, adhesion and enhanced osteogenic differentiation ability. Based on the results above, the addition of 1% MP in SF/CMCS/SA scaffolds is a prospective way for drug release in bone regeneration and is promising for further in vivo bone repair applications.
Collapse
Affiliation(s)
- Yiwan Shi
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological And Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, PR China
| | - Zhaozhen Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological And Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, PR China
| | - Weikang Xu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological And Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaolu Yu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological And Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, PR China
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological And Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinting Zhou
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological And Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiwen Chen
- The Affiliated Shunde Hospital of Jinan University, The Second People's Hospital of Shunde, Foshan, Guangdong, China
| | - Kunfeng Jia
- Herbal Kingdom Pharmaceutical Co., Ltd, Macau, China
| | - Lek Hang Cheang
- Department of Orthopedic Surgery, Centro Hospitalar Conde de Sao Januario, Macau, China
| | - Man Seng Tam
- IAN WO Medical Center, Macao Special Administrative Region, People's Republic of China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, PR China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, PR China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological And Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Rana D, Rangel VR, Padmanaban P, Trikalitis VD, Kandar A, Kim HW, Rouwkema J. Bioprinting of Aptamer-Based Programmable Bioinks to Modulate Multiscale Microvascular Morphogenesis in 4D. Adv Healthc Mater 2025; 14:e2402302. [PMID: 39487611 DOI: 10.1002/adhm.202402302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Dynamic growth factor presentation influences how individual endothelial cells assemble into complex vascular networks. Here, programmable bioinks are developed that facilitate dynamic vascular endothelial growth factor (VEGF) presentation to guide vascular morphogenesis within 3D-bioprinted constructs. Aptamer's high affinity is leveraged for rapid VEGF sequestration in spatially confined regions and utilized aptamer-complementary sequence (CS) hybridization to tune VEGF release kinetics temporally, days after bioprinting. It is shown that spatial resolution of programmable bioink, combined with CS-triggered VEGF release, significantly influences the alignment, organization, and morphogenesis of microvascular networks in bioprinted constructs. The presence of aptamer-tethered VEGF and the generation of instantaneous VEGF gradients upon CS-triggering restricted hierarchical network formation to the printed aptamer regions at all spatial resolutions. Network properties improved as the spatial resolution decreased, with low-resolution designs yielding the highest network properties. Specifically, CS-treated low-resolution designs exhibited significant vascular network remodeling, with an increase in vessel density(1.35-fold), branching density(1.54-fold), and average vessel length(2.19-fold) compared to non-treated samples. The results suggest that CS acts as an external trigger capable of inducing time-controlled changes in network organization and alignment on-demand within spatially localized regions of a bioprinted construct. It is envisioned that these programmable bioinks will open new opportunities for bioengineering functional, hierarchically self-organized vascular networks within engineered tissues.
Collapse
Affiliation(s)
- Deepti Rana
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Vincent R Rangel
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Prasanna Padmanaban
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Vasileios D Trikalitis
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Ajoy Kandar
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| |
Collapse
|
3
|
Wang Y, Zhou X, He L, Zhou X, Wang Y, Zhou P. Research Progress on Using Modified Hydrogel Coatings as Marine Antifouling Materials. Mar Drugs 2024; 22:546. [PMID: 39728121 PMCID: PMC11676044 DOI: 10.3390/md22120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
The adhesion of marine organisms to marine facilities negatively impacts human productivity. This phenomenon, known as marine fouling, constitutes a serious issue in the marine equipment industry. It increases resistance for ships and their structures, which, in turn, raises fuel consumption and reduces ship speed. To date, numerous antifouling strategies have been researched to combat marine biofouling. However, a multitude of these resources face long-term usability issues due to various limitations, such as low adhesion quality, elevated costs, and inefficacy. Hydrogels, exhibiting properties akin to the slime layer on the skin of many aquatic creatures, possess a low frictional coefficient and a high rate of water absorbency and are extensively utilized in the marine antifouling field. This review discusses the recent progress regarding the application of hydrogels as an important marine antifouling material in recent years. It introduces the structure, properties, and classification of hydrogels; summarizes the current research status of improved hydrogels in detail; and analyzes the improvement in their antifouling properties and the prospects for their application in marine antifouling.
Collapse
Affiliation(s)
- Ying Wang
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Xiaohong Zhou
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China;
| | - Lingyan He
- College of Mechanical and Electrical Engineering, Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China
| | - Xiangkai Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Yantian Wang
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Peijian Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| |
Collapse
|
4
|
Zhang C, Qi Y, Guo Y, Zhang S, Xiong G, Wang K, Zhang Z. Anti-marine biofouling adhesion performance and mechanism of PDMS fouling-release coating containing PS-PEG hydrogel. MARINE POLLUTION BULLETIN 2023; 194:115345. [PMID: 37531797 DOI: 10.1016/j.marpolbul.2023.115345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Polystyrene microspheres compounded with polyethylene glycol-based hydrogel (PS-PEG)/polydimethylsiloxane (PDMS) coatings were prepared using the physical blending method. The chemical structure, surface and interface properties, interlayer adhesion, and tensile properties were tested in this paper. Furthermore, the antifouling performance was evaluated through bovine serum albumin fluorescent protein adsorption testing, marine bacteria adhesion testing, and benthic diatom adhesion testing. The results showed that the coating performance was best when 20 wt% PS-PEG hydrogel was added. Its surface energy was only 19.21 mJ/m2, the maximum breaking strength was 1.24 MPa, the maximum elongation rate was 675 %, the elastic modulus was 2.53 MPa, and the anti-stripping rate was 100 %. In addition, the coating with added 20 wt% PS-PEG hydrogel bacterial adherence rate was 5.36 % and 2.45 % after rinsing and washing, respectively, and the removal rate was 54.29 %. In the benthic diatom adhesion test, the chlorophyll concentration a-value was only 0.0017 mg/L after washing with added 20 wt% hydrogel, and the protein desorption rate was 84.19 % higher than PDMS in the fluorescent protein adsorption test. This coating has the 'low adhesion' and 'desorption' characteristics in the three growth stages of biofouling. Meanwhile, the low surface energy of the silicone is stable, and the hydrogel also dynamically migrates to the surface to gradually form a hydration layer, both are synergistic. When 20 wt% PS-PEG hydrogel was added, the coating demonstrated excellent antifouling performance due to its high hydration layer, low surface energy, high elasticity, and high interlayer adhesion. This research is expected to contribute to the practical applications of hydrogel coatings in marine antifouling.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yuhong Qi
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yarui Guo
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Shukun Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Gang Xiong
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Kaixuan Wang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zhanping Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
5
|
Ranjan A, Ahmad A, Ahluwalia BS, Melandsø F. Laser-Generated Scholte Waves in Floating Microparticles. SENSORS (BASEL, SWITZERLAND) 2023; 23:1776. [PMID: 36850374 PMCID: PMC9961672 DOI: 10.3390/s23041776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
This study aims to demonstrate the generation and detection of Scholte waves inside polystyrene microparticles. This was proven using both experimental analysis and COMSOL simulation. Microspheres of different sizes were excited optically with a pulsed laser (532 nm), and the acoustic signals were detected using a transducer (40 MHz). On analyzing the laser-generated ultrasound signals, the results obtained experimentally and from COMSOL are in close agreement both in the time and frequency domain. A simplified analysis of Scholte wave generation by laser irradiation for homogeneous, isotropic microspheres is presented. The theoretical wave velocity of the Scholte wave was calculated and found close to our experimental results. A representation of pressure wave motion showing the Scholte wave generation is presented at different times.
Collapse
|
6
|
Zhang S, Lin A, Tao Z, Fu Y, Xiao L, Ruan G, Li Y. Microsphere‐containing hydrogel scaffolds for tissue engineering. Chem Asian J 2022; 17:e202200630. [PMID: 35909078 DOI: 10.1002/asia.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shihao Zhang
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Anqi Lin
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Ziwei Tao
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Yingying Fu
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Lan Xiao
- Queensland University of Technology Centre for Biomedical Technologies AUSTRALIA
| | | | - Yulin Li
- East China University of Science and Technology Meilong Road 130 Shanghai CHINA
| |
Collapse
|
7
|
Zhang C, Qi Y, Zhang Z. Swelling Behaviour of Polystyrene Microsphere Enhanced PEG-Based Hydrogels in Seawater and Evolution Mechanism of Their Three-Dimensional Network Microstructure. MATERIALS 2022; 15:ma15144959. [PMID: 35888427 PMCID: PMC9316508 DOI: 10.3390/ma15144959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022]
Abstract
To understand the microstructure evolution of hydrogels swollen in seawater, freeze-drying technology was used to fix and preserve the swollen three-dimensional microstructure. By this method, we revealed the swelling behavior of hydrogels in seawater, and elucidated the mechanism of the swelling process. Meanwhile, we also used Fourier-transform infrared spectroscopy; laser confocal microscopy; field emission scanning electron microscopy, and swelling performance tests to research the structure and properties of PS-PEG hydrogels, before and after seawater swelling, and analyzed the structure and properties of PEG-based hydrogels with different contents of polystyrene microspheres. Results showed that PS-PEG hydrogels went through three stages during the swelling process, namely ‘wetting-rapid swelling-swelling equilibrium’. Due to the capillary effect and hydration effect, the surface area would initially grow tiny pores, and enter the interior in a free penetration manner. Finally, it formed a stable structure, and this process varied with different content of polystyrene microspheres. In addition, with the increase of polystyrene microsphere content, the roughness of the hydrogel before swelling would increase, but decrease after swelling. Appropriate acquisition of polystyrene microspheres could enhance the three-dimensional network structure of PEG-based hydrogels, with a lower swelling degree than hydrogels without polystyrene microspheres.
Collapse
|
8
|
Liu S, Xu L, Yuan Z, Huang M, Yang T, Chen S. 3D Interlayer Slidable Multilayer Nano-Graphene Oxide Acrylate Crosslinked Tough Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8200-8210. [PMID: 35765949 DOI: 10.1021/acs.langmuir.2c00355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design of three-dimensional crosslinked units with a spatial structure is of great significance for improving the mechanical properties of hydrogels. However, almost all the nanocomposites incorporated in hydrogels were defined as rigid nanofillers without further discussion on the potential contribution from the spatial structure change. In this work, the 3D nano chemical crosslinker multilayer graphene oxide acrylate (mGOa) was developed as a pressure-responsive crosslinker to achieve both low elastic modulus and high compression stress by synergizing more polymer chains against the loading force through interlayer sliding. Results showed that the hydrogel crosslinked by only 2 mg/mL mGOa nano chemical crosslinker in the poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogel (molar ratio: 1:1) can effectively enhance the mechanical strength up to 14.1 ± 2.1 MPa at a high compressive strain (90.6%) with an elastic modulus of less than 0.03 MPa at the initial 5% compression, whereas the hydrogel crosslinked by methacrylated single-layer graphene oxide (sGOa) or a small-molecule chemical crosslinker, N,N'-methylene bisacrylamide, can only reach 2.3 ± 0.8 MPa and 1.4 ± 0.4 MPa, respectively. In addition, the instantaneous modulus of the mGOa crosslinked hydrogel rapidly increased to the peak value with the increase of strain. The repeated compression test of HcA-mGOa hydrogels showed the responsive increase of the modulus, which was promoted by the synergism of polymer chains under compression. This indicated that the interlayer sliding of mGOa is the key contributor to mechanical strength enhancement, which provides a new rationale to design tough hydrogels.
Collapse
Affiliation(s)
- Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangbo Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhefan Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Tian Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|