1
|
Bucciarelli A, Selicato N, Coricciati C, Rainer A, Capodilupo AL, Gigli G, Moroni L, Polini A, Gervaso F. Modelling methacrylated chitosan hydrogel properties through an experimental design approach: from composition to material properties. J Mater Chem B 2024; 12:10221-10240. [PMID: 39248047 DOI: 10.1039/d4tb00670d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Hydrogels of biopolymers are gradually substituting synthetic hydrogels in tissue engineering applications due to their properties. However, biopolymeric hydrogels are difficult to standardize because of the intrinsic variability of the material and the reversibility of physical crosslinking processes. In this work, we synthesized a photocrosslinkable derivative of chitosan (Cs), namely methacrylated chitosan (CsMA), in which the added methacrylic groups allow the formation of hydrogels through radical polymerization triggered by UV exposure. We then performed a systematic study to link the physical properties of the materials to its preparation parameters to standardize its preparation according to specific applications. We studied the properties of CsMA solutions and the derived hydrogels using a statistical method, namely, response surface method, which allowed us to build empirical models describing material properties in terms of several selected processing factors. In particular, we studied the viscosity of CsMA solutions as a function of CsMA concentration, temperature, and shear rate, while hydrogel compression modulus, morphology, degradation and solubilization were investigated as a function of CsMA concentration, photoinitiator concentration and UV exposure. CsMA solutions resulted in shear thinning and were thus suitable for extrusion-based 3D printing. The CsMA hydrogel was found to be highly tunable, with a stiffness in the 12-64 kPa range, and was stable over a long timeframe (up to 60 days). Finally, the possibility to engineer hydrogel stiffness through an empirical model allowed us to hypothesize a number of possible applications based on the mechanical properties of several biological tissues reported in the literature.
Collapse
Affiliation(s)
- Alessio Bucciarelli
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Nora Selicato
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| | - Chiara Coricciati
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Alberto Rainer
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
- Department of Engineering, Università Campus Bio-Medico di Roma, via Alvaro del Portillo, 21, 00128, Rome, Italy.
| | - Agostina Lina Capodilupo
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Gigli
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands.
| | - Alessandro Polini
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Gervaso
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
2
|
De Vitis E, Stanzione A, Romano A, Quattrini A, Gigli G, Moroni L, Gervaso F, Polini A. The Evolution of Technology-Driven In Vitro Models for Neurodegenerative Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304989. [PMID: 38366798 DOI: 10.1002/advs.202304989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/15/2024] [Indexed: 02/18/2024]
Abstract
The alteration in the neural circuits of both central and peripheral nervous systems is closely related to the onset of neurodegenerative disorders (NDDs). Despite significant research efforts, the knowledge regarding NDD pathological processes, and the development of efficacious drugs are still limited due to the inability to access and reproduce the components of the nervous system and its intricate microenvironment. 2D culture systems are too simplistic to accurately represent the more complex and dynamic situation of cells in vivo and have therefore been surpassed by 3D systems. However, both models suffer from various limitations that can be overcome by employing two innovative technologies: organ-on-chip and 3D printing. In this review, an overview of the advantages and shortcomings of both microfluidic platforms and extracellular matrix-like biomaterials will be given. Then, the combination of microfluidics and hydrogels as a new synergistic approach to study neural disorders by analyzing the latest advances in 3D brain-on-chip for neurodegenerative research will be explored.
Collapse
Affiliation(s)
- Eleonora De Vitis
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| | - Antonella Stanzione
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Romano
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Institute of Experimental Neurology, Milan, 20132, Italy
| | - Angelo Quattrini
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Institute of Experimental Neurology, Milan, 20132, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
- Dipartimento di Medicina Sperimentale, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Lorenzo Moroni
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
- Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, Netherlands
| | - Francesca Gervaso
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Polini
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
3
|
Vigliar MFR, Marega LF, Duarte MAH, Alcalde MP, Rosso MPDO, Ferreira Junior RS, Barraviera B, Reis CHB, Buchaim DV, Buchaim RL. Photobiomodulation Therapy Improves Repair of Bone Defects Filled by Inorganic Bone Matrix and Fibrin Heterologous Biopolymer. Bioengineering (Basel) 2024; 11:78. [PMID: 38247955 PMCID: PMC10813421 DOI: 10.3390/bioengineering11010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Biomaterials are used extensively in graft procedures to correct bone defects, interacting with the body without causing adverse reactions. The aim of this pre-clinical study was to analyze the effects of photobiomodulation therapy (PBM) with the use of a low-level laser in the repair process of bone defects filled with inorganic matrix (IM) associated with heterologous fibrin biopolymer (FB). A circular osteotomy of 4 mm in the left tibia was performed in 30 Wistar male adult rats who were randomly divided into three groups: G1 = IM + PBM, G2 = IM + FB and G3 = IM + FB + PBM. PBM was applied at the time of the experimental surgery and three times a week, on alternate days, until euthanasia, with 830 nm wavelength, in two points of the operated site. Five animals from each group were euthanized 14 and 42 days after surgery. In the histomorphometric analysis, the percentage of neoformed bone tissue in G3 (28.4% ± 2.3%) was higher in relation to G1 (24.1% ± 2.91%) and G2 (22.2% ± 3.11%) at 14 days and at 42 days, the percentage in G3 (35.1% ± 2.55%) was also higher in relation to G1 (30.1% ± 2.9%) and G2 (31.8% ± 3.12%). In the analysis of the birefringence of collagen fibers, G3 showed a predominance of birefringence between greenish-yellow in the neoformed bone tissue after 42 days, differing from the other groups with a greater presence of red-orange fibers. Immunohistochemically, in all experimental groups, it was possible to observe immunostaining for osteocalcin (OCN) near the bone surface of the margins of the surgical defect and tartrate-resistant acid phosphatase (TRAP) bordering the newly formed bone tissue. Therefore, laser photobiomodulation therapy contributed to improving the bone repair process in tibial defects filled with bovine biomaterial associated with fibrin biopolymer derived from snake venom.
Collapse
Affiliation(s)
- Maria Fernanda Rossi Vigliar
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (M.F.R.V.); (D.V.B.)
| | - Lais Furlaneto Marega
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (M.A.H.D.); (M.P.A.)
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (M.A.H.D.); (M.P.A.)
| | - Marcelie Priscila de Oliveira Rosso
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (R.S.F.J.); (B.B.)
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), Sao Paulo State University (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil; (R.S.F.J.); (B.B.)
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), Sao Paulo State University (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (M.F.R.V.); (D.V.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil; (M.F.R.V.); (D.V.B.)
- Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo (FOB/USP), Bauru 17012-901, Brazil; (L.F.M.); (M.P.d.O.R.); (C.H.B.R.)
| |
Collapse
|
4
|
Rizzo R, Onesto V, Morello G, Iuele H, Scalera F, Forciniti S, Gigli G, Polini A, Gervaso F, del Mercato LL. pH-sensing hybrid hydrogels for non-invasive metabolism monitoring in tumor spheroids. Mater Today Bio 2023; 20:100655. [PMID: 37234366 PMCID: PMC10205545 DOI: 10.1016/j.mtbio.2023.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
The constant increase in cancer incidence and mortality pushes biomedical research towards the development of in vitro 3D systems able to faithfully reproduce and effectively probe the tumor microenvironment. Cancer cells interact with this complex and dynamic architecture, leading to peculiar tumor-associated phenomena, such as acidic pH conditions, rigid extracellular matrix, altered vasculature, hypoxic condition. Acidification of extracellular pH, in particular, is a well-known feature of solid tumors, correlated to cancer initiation, progression, and resistance to therapies. Monitoring local pH variations, non-invasively, during cancer growth and in response to drug treatment becomes extremely important for understanding cancer mechanisms. Here, we describe a simple and reliable pH-sensing hybrid system, based on a thermoresponsive hydrogel embedding optical pH sensors, that we specifically apply for non-invasive and accurate metabolism monitoring in colorectal cancer (CRC) spheroids. First, the physico-chemical properties of the hybrid sensing platform, in terms of stability, rheological and mechanical properties, morphology and pH sensitivity, were fully characterized. Then, the proton gradient distribution in the spheroids proximity, in the presence or absence of drug treatment, was quantified over time by time lapse confocal light scanning microscopy and automated segmentation pipeline, highlighting the effects of the drug treatment in the extracellular pH. In particular, in the treated CRC spheroids the acidification of the microenvironment resulted faster and more pronounced over time. Moreover, a pH gradient distribution was detected in the untreated spheroids, with more acidic values in proximity of the spheroids, resembling the cell metabolic features observed in vivo in the tumor microenvironment. These findings promise to shed light on mechanisms of regulation of proton exchanges by cellular metabolism being essential for the study of solid tumors in 3D in vitro models and the development of personalized medicine approaches.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Giulia Morello
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics ‘‘Ennio De Giorgi”, University of Salento, C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Francesca Scalera
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics ‘‘Ennio De Giorgi”, University of Salento, C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Alessandro Polini
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Francesca Gervaso
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Loretta L. del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
5
|
Morello G, De Iaco G, Gigli G, Polini A, Gervaso F. Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels 2023; 9:132. [PMID: 36826302 PMCID: PMC9957157 DOI: 10.3390/gels9020132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrogels are fascinating biomaterials that can act as a support for cells, i.e., a scaffold, in which they can organize themselves spatially in a similar way to what occurs in vivo. Hydrogel use is therefore essential for the development of 3D systems and allows to recreate the cellular microenvironment in physiological and pathological conditions. This makes them ideal candidates for biological tissue analogues for application in the field of both tissue engineering and 3D in vitro models, as they have the ability to closely mimic the extracellular matrix (ECM) of a specific organ or tissue. Polysaccharide-based hydrogels, because of their remarkable biocompatibility related to their polymeric constituents, have the ability to interact beneficially with the cellular components. Although the growing interest in the use of polysaccharide-based hydrogels in the biomedical field is evidenced by a conspicuous number of reviews on the topic, none of them have focused on the combined use of two important polysaccharides, chitosan and pectin. Therefore, the present review will discuss the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Gianvito De Iaco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
6
|
Yang D, Gong L, Li Q, Fan B, Ma C, He YC. Preparation of a biobased polyelectrolyte complex from chitosan and sodium carboxymethyl cellulose and its antibacterial characteristics. Int J Biol Macromol 2023; 227:524-534. [PMID: 36526065 DOI: 10.1016/j.ijbiomac.2022.12.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Using chitosan (CTS) and sodium carboxymethyl cellulose (CMCNa) as raw biobased materials, polyelectrolyte complex (PEC), which is the product of strong electrostatic interaction between two bio-based polyelectrolytes with opposite charges, was attempted to prepare. To enlarge the reactive contact area between CTS and CMCNa, the crosslinked vacuolar structure of PEC was prepared without addition of cross-linked agent. The preparation conditions had a significant impact on the yield of PEC and the bibulous rate of PEC. When pH, mass ratio of CMC-Na-to-CTS, stirring speed and reaction system temperature were 5, 1:2 [(1 wt% CMCNa, 2 wt% CTS), CMC-Na:CTS = 1:1 (v/v)], 800 rpm, 2 min and 25 °C, the yield of PEC reached 71.2 %. The prepared PEC was characterized by XRD and FT-IR. Afterwards, the antibacterial performance of PEC was examined. The prepared PEC had certain bacteriostatic effect on gram-positive and gram-negative bacteria. The bacteriostasis ratios of PEC against Escherichia coli and Staphylococcus aureus were 18.7 % and 31.3 %, respectively. By controlling the combination parameters of the preparation system, an effective strategy was successfully developed for preparation of biobased PEC with bacteriostatic and crosslinked vacuolar structure through simple physical blending without the application of additional crosslinker.
Collapse
Affiliation(s)
- Dong Yang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Lei Gong
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Bo Fan
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
7
|
Liu Y, Weng P, Liu Y, Wu Z, Wang L, Liu L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Camponogara F, Zanotti F, Trentini M, Tiengo E, Zanolla I, Pishavar E, Soliani E, Scatto M, Gargiulo P, Zambito Y, De Luca S, Ferroni L, Zavan B. Biomaterials for Regenerative Medicine in Italy: Brief State of the Art of the Principal Research Centers. Int J Mol Sci 2022; 23:8245. [PMID: 35897825 PMCID: PMC9368060 DOI: 10.3390/ijms23158245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability. In fact, they can be used as principal components, coatings or vehicles to functionalize several biomaterials. There are many leading centers for the research and development of biomaterials in Italy. The aim of this review is to provide an overview of the current state of the art on polymer research for regenerative medicine purposes. The last five years of scientific production of the main Italian research centers has been screened to analyze the current advancement in tissue engineering in order to highlight inputs for the development of novel biomaterials and strategies.
Collapse
Affiliation(s)
- Francesca Camponogara
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Martina Trentini
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elena Tiengo
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Ilaria Zanolla
- Medical Sciences Department, University of Ferrara, 44121 Ferrara, Italy;
| | - Elham Pishavar
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| | - Elisa Soliani
- Bioengineering Department, Imperial College London, London SW7 2BX, UK;
| | - Marco Scatto
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy;
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland;
- Department of Science, Landspítali, 101 Reykjavík, Iceland
| | - Ylenia Zambito
- Chemical Department, University of Pisa, 56124 Pisa, Italy;
| | - Stefano De Luca
- Unit of Naples, Institute of Applied Sciences and Intelligent Systems, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy;
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy;
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (F.Z.); (M.T.); (E.T.); (E.P.)
| |
Collapse
|
9
|
Sustained and Microenvironment-Accelerated Release of Minocycline from Alginate Injectable Hydrogel for Bacteria-Infected Wound Healing. Polymers (Basel) 2022; 14:polym14091816. [PMID: 35566985 PMCID: PMC9105076 DOI: 10.3390/polym14091816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
During wound healing, bacterial infection is one of the main limiting factors for the desired efficiency. Wound dressing-mediated antibiotics therapies could overcome this problem to a great extent due to sustained drug release and controllable dose. Here, we designed a kind of alginate injectable hydrogel loaded with minocycline (SA@MC) as a dressing for staphylococcus aureus-infected wound healing. SA@MC hydrogel possessed good injectability and can be injected by syringes. MC participated in the gel formation, causing the microstructure change based on the morphology characterization. The element mapping and FT-IR spectra further confirmed the successful loading of MC in SA hydrogel. Interestingly, MC was released more efficiently in a weakly alkaline condition (pH 7–8) than in a weakly acidic condition (pH 4–6) from SA@MC injectable hydrogel, which means that there is an accelerated release to respond to the weakly alkaline wound microenvironment. Meanwhile, SA@MC injectable hydrogel had high biocompatibility and excellent antibacterial activity due to the sustained release of MC. Further, in vivo experiment results demonstrated that SA@MC injectable hydrogel promoted staphylococcus aureus-infected wound healing efficiently. In summary, the injectable composite hydrogel can serve as an ideal dressing to prevent bacterial infection and promote wound healing.
Collapse
|
10
|
Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines 2021; 9:1235. [PMID: 34572421 PMCID: PMC8472341 DOI: 10.3390/biomedicines9091235] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic wounds do not progress through the wound healing process in a timely manner and are considered a burden for healthcare system; they are also the most common reason for decrease in patient quality of life. Traditional wound dressings e.g., bandages and gauzes, although highly absorbent and effective for dry to mild, exudating wounds, require regular application, which therefore can cause pain upon dressing change. In addition, they have poor adhesional properties and cannot provide enough drainage for the wound. In this regard, the normalization of the healing process in chronic wounds is an extremely urgent task of public health and requires the creation and implementation of affordable dressings for patients with chronic wounds. Modern wound dressings (WDs) are aimed to solve these issues. At the same time, hydrogels, unlike other types of modern WDs (foam, films, hydrocolloids), have positive degradation properties that makes them the perfect choice in applications where a targeted delivery of bioactive substances to the wound is required. This mini review is focused on different types of traditional and modern WDs with an emphasis on hydrogels. Advantages and disadvantages of traditional and modern WDs as well as their applicability to different chronic wounds are elucidated. Furthermore, an effectiveness comparison between hydrogel WDs and the some of the frequently used biotechnologies in the field of regenerative medicine (adipose-derived mesenchymal stem cells (ADMSCs), mesenchymal stem cells, conditioned media, platelet-rich plasma (PRP)) is provided.
Collapse
Affiliation(s)
| | - Tatiana Astrelina
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, 123098 Moscow, Russia; (V.B.); (T.M.); (A.S.)
| | | | | |
Collapse
|