Surface Modification of γ-Al
2O
3 Nanoparticles Using Conductive Polyaniline Doped by Dodecylbenzene Sulfonic Acid.
Polymers (Basel) 2022;
14:polym14112232. [PMID:
35683907 PMCID:
PMC9182910 DOI:
10.3390/polym14112232]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023] Open
Abstract
In this study, electrically conductive PANDB/γ-Al2O3 core–shell nanocomposites were synthesized by surface modification of γ-Al2O3 nanoparticles using polyaniline doped with dodecylbenzene sulfonic acid. The PANDB/γ-Al2O3 core–shell nanocomposites were synthesized by in situ polymerization. Pure PANDB and the PANDB/γ-Al2O3 core–shell nanocomposites were characterized using Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, transmission electron microscopy, field emission scanning electron microscopy, and measurement of a four-point probe. The conductivity of the PANDB/γ-Al2O3 core–shell nanocomposite was about 0.72 S/cm when the weight ratio of aniline/γ-Al2O3 was 3/1. The results showed that the conductivity of the PANDB/γ-Al2O3 core–shell nanocomposite decreased with increasing amounts of γ-Al2O3 nanoparticles. The transmission electron microscopy results indicated that the γ-Al2O3 nanoparticles were thoroughly coated with PANDB to form a core–shell structure. Transmission electron microscopy and field emission scanning electron microscopy images of the conductive PANDB/γ-Al2O3 core–shell nanocomposites also showed that the thickness of the PANDB layer decreased as the amount of γ-Al2O3 was increased.
Collapse