1
|
Ali M, Ullah S, Ullah S, Shakeel M, Afsar T, Husain FM, Amor H, Razak S. Innovative biopolymers composite based thin film for wound healing applications. Sci Rep 2024; 14:27415. [PMID: 39521931 PMCID: PMC11550429 DOI: 10.1038/s41598-024-79121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Efficient wound and burn healing is crucial for minimising complications, preventing infections, and enhancing overall well-being, necessitating the development of innovative strategies. This study aimed to formulate a novel thin film combining chitosan, carboxymethyl cellulose, tannic acid, and beeswax for improved wound healing applications. Several formulations, incorporating chitosan, carboxymethyl cellulose, tannic acid, and beeswax in various percentages, were utilized to deposit thin films via the solvent evaporation technique, Mechanical properties, morphology, antioxidant activity, antibacterial efficacy, and wound healing potential were evaluated. The optimized thin film (M4), composed of 2% chitosan, 2% carboxymethyl cellulose, and 1% tannic acid, along with 0.2% glycerol and 0.2% tween80, exhibited a thickness of 39.0 ± 1.14 μm and a tensile strength of 0.275 ± 0.003 MPa. It demonstrated a swelling degree of 283.0 ± 2.0% and a drug release capacity of 89.4% within 24 h. The film also showed a low contact angle of 40.5° and a water vapour transmission rate of 1912.25 ± 13.10 g m-2 0.24 h-1. FT-IR spectroscopy indicated that chitosan and carboxymethyl cellulose were cross-linked through amide linkages, with tannic acid occupying the interstitial spaces and hydrogen bonding stabilizing the structure. Microscopy of M4 revealed a uniform morphology. The film exhibited strong antioxidant activity of (95.17 ± 0.02%) and antibacterial efficiency (80.8%) against S. aureus. In a rabbit model, the film significantly enhanced burn and excision wound recovery, with 90.0 ± 3.3% healing for burns and 88.85 ± 1.7% for infected wounds by day 7. Complete skin regeneration was observed within 10-12 days. The M4 thin film demonstrated exceptional mechanical properties and bioactivity, offering protection against pathogens and promoting efficient wound healing. These findings suggest its potential for further investigation in treating various infections and its role in developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Majid Ali
- Department of Chemistry, Government Postgraduate College No. 1, Abbottabad, 22010, KPK, Pakistan.
- Department of Higher Education Archives and Library, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan.
| | - Shakir Ullah
- Department of Chemistry, Government Postgraduate College No. 1, Abbottabad, 22010, KPK, Pakistan
| | - Shaker Ullah
- Department of Chemistry, Government Postgraduate College No. 1, Abbottabad, 22010, KPK, Pakistan
| | - Muhammad Shakeel
- Department of Chemistry, Government Postgraduate College No. 1, Abbottabad, 22010, KPK, Pakistan
- Department of Higher Education Archives and Library, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Houda Amor
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, Homburg, Germany
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Kim DH, Lee SW, Lee JH, Park JW, Park SM, Maeng HJ, Koo TS, Cho KH. Development of Gastroretentive Floating Combination Tablets Containing Amoxicillin Trihydrate 500 mg and Levofloxacin 125 mg for Eradicating Resistant Helicobacter pylori. Pharmaceutics 2024; 16:1242. [PMID: 39458574 PMCID: PMC11510249 DOI: 10.3390/pharmaceutics16101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The aim of this work was to prepare and characterize gastroretentive floating combination tablets (GRCTs) containing 500 mg of amoxicillin trihydrate (AMX) and 125 mg of levofloxacin (LVX) that provide sustained drug release and stability at gastric pH levels for the eradication of resistant Helicobacter pylori. Method: GRCTs were prepared with low-density excipients and hydrophilic swellable polymers, including hydroxypropyl methylcellulose (HPMC) of various viscosities, polyethylene oxide (PEO), and carboxymethylcellulose (CMC), by the direct compression method. The prepared GRCTs were investigated and optimized in terms of pH stability, tablet hardness, floating lag time and total floating time, drug release rate, gel strength. Results: AMX and LVX in GRCT were stable at the HP eradication target pH above 4.0. The effervescent GRCT composition (AMX/LVX/HPMC [4000 cP]/CMC/microcrystalline cellulose/citric acid/sodium bicarbonate/calcium silicate/silicon dioxide/magnesium stearate = 500/125/50/50/125/40/60/30/10/10, w/w) yielded acceptable hardness (>6 kp), reduced floating lag time (<5 s), a long floating duration (>12 h), and sustained release rates of AMX and LVX (>90% until 12 h). This optimized GRCT had a gel strength of 107.33 ± 10.69 g and pH > 4.0, which maintained the tablets' shape and AMX stability for 12 h. Conclusions: Collectively, the formulated effervescent GRCTs combining AMX and LVX represented a promising candidate dosage form for eradicating resistant H. pylori.
Collapse
Affiliation(s)
- Da Hun Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea; (D.H.K.); (J.H.L.); (J.W.P.); (S.M.P.)
| | - Sa-Won Lee
- Department of Pharmaceutical Engineering, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea;
| | - Jun Hak Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea; (D.H.K.); (J.H.L.); (J.W.P.); (S.M.P.)
| | - Jin Woo Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea; (D.H.K.); (J.H.L.); (J.W.P.); (S.M.P.)
| | - Sung Mo Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea; (D.H.K.); (J.H.L.); (J.W.P.); (S.M.P.)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoei-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Kwan Hyung Cho
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea; (D.H.K.); (J.H.L.); (J.W.P.); (S.M.P.)
| |
Collapse
|
3
|
Dahma Z, Torrado-Salmerón C, Álvarez-Álvarez C, Guarnizo-Herrero V, Martínez-Alonso B, Torrado G, Torrado-Santiago S, de la Torre-Iglesias PM. Topical Meloxicam Hydroxypropyl Guar Hydrogels Based on Low-Substituted Hydroxypropyl Cellulose Solid Dispersions. Gels 2024; 10:207. [PMID: 38534625 DOI: 10.3390/gels10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Meloxicam (MX) is a poorly water-soluble drug with severe gastrointestinal side effects. Topical hydrogel of hydroxypropyl guar (HPG) was formulated using a solid dispersion (SD) of MX with hydroxypropyl cellulose (LHPC) as an alternative to oral administration. The development of a solid dispersion with an adequate MX:LHPC ratio could increase the topical delivery of meloxicam. Solid dispersions showed high MX solubility values and were related to an increase in hydrophilicity. The drug/polymer and polymer/polymer interactions of solid dispersions within the HPG hydrogels were evaluated by SEM, DSC, FTIR, and viscosity studies. A porous structure was observed in the solid dispersion hydrogel MX:LHPC (1:2.5) and its higher viscosity was related to a high increase in hydrogen bonds among the -OH groups from LHPC and HPG with water molecules. In vitro drug release studies showed increases of 3.20 and 3.97-fold for hydrogels with MX:LHPC ratios of (1:1) and (1:2.5), respectively, at 2 h compared to hydrogel with pure MX. Finally, a fitting transition from zero to first-order model was observed for these hydrogels containing solid dispersions, while the n value of Korsmeyer-Peppas model indicated that release mechanism is governed by diffusion through an important relaxation of the polymer.
Collapse
Affiliation(s)
- Zaid Dahma
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Covadonga Álvarez-Álvarez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain
| | - Borja Martínez-Alonso
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain
| | - Guillermo Torrado
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
4
|
Xu X, Guo L, Wang S, Wang X, Ren M, Zhao P, Huang Z, Jia H, Wang J, Lin A. Effective strategies for reclamation of saline-alkali soil and response mechanisms of the soil-plant system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167179. [PMID: 37730027 DOI: 10.1016/j.scitotenv.2023.167179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
The combination of amendments has emerged as a potential strategy to efficiently alleviate salt stress in saline-alkali soil. However, knowledge regarding how to optimize the proportion of different amendment materials, comprehensively assess the contribution of each component, and clarify the response mechanisms of the amendment-saline-alkali soil-plant system is incomplete. Based on this, we conducted a pot experiment to evaluate the improvement effect of the combined application of different amendment materials at varying levels and the contribution of the amendment components to alleviating salt stress. Overall, T6 exhibited the most significant improvement effect on the physicochemical and biological properties of the saline-alkali soil and promoted the growth of oilseed rape, with the levels of 2.0 % phosphogypsum, 2.0 % humic acid, 0.25 % bentonite, and 0.03 % sodium carboxymethyl cellulose. Compared with the control group, the EC decreased by 1.51 % to 33.49 %, the soil salt content dropped by 11.40 % to 35.46 %, and the soil soluble Na + concentration significantly declined by 39.47 % to 63.20 %. Additionally, the soil nutrient content and soil microbial community structure were enhanced in treatment groups. Meanwhile, amendments alleviated salt stress in the oilseed rape plant by activating anti-oxidative enzymes and osmoregulatory substances such as soluble sugar and proline, thus improving their ability to remove reactive oxygen species (ROS). The anti-oxidative enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased, with an increase of 10.68 % (SOD, T2) ∼207.31 % (CAT, T6) compared to the control group. The structural equation modeling (SEM) analysis and simulation experiments indicated that the amendment components synergically promoted the amelioration effect on salt stress, and effectively improved soil properties, which affected the response of oilseed rape to soil environment. This research paper provides the relevant reference for the combined application of different amendment materials for soil reclamation.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lin Guo
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Shaobo Wang
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Xuanyi Wang
- Engineering of Fluid Mechanics, Coastal and Built Environments, Imperial College London, London SW7 2AZ, UK
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ziyi Huang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongjun Jia
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
5
|
López-Manzanara Pérez C, Torres-Pabón NS, Laguna A, Torrado G, de la Torre-Iglesias PM, Torrado-Santiago S, Torrado-Salmerón C. Development of Chitosan/Sodium Carboxymethylcellulose Complexes to Improve the Simvastatin Release Rate: Polymer/Polymer and Drug/Polymer Interactions' Effects on Kinetic Models. Polymers (Basel) 2023; 15:4184. [PMID: 37896428 PMCID: PMC10610795 DOI: 10.3390/polym15204184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Simvastatin (SIM) is a potent lipid-lowering drug used to control hyper-cholesterolemia and prevent cardiovascular diseases. SIM presents low oral bioavailability (5%) because of its low aqueous solubility. In this work, polyelectrolyte complexes (PEC) are developed with different chitosan (CS) and carboxymethylcellulose (CMC) ratios that will allow for an increase in the SIM dissolution rate (2.54-fold) in simulated intestinal medium (pH 4.5). Scanning Electron Microscopy (SEM) images revealed highly porous structures. The changes between both complexes, PEC-SIM:CS:CMC (1:1:2) and (1:2:1), were related to the relaxation of the polymer chains upon absorption of the dissolution medium. Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffraction (XRPD) studies were used to evaluate the polymer/polymer and drug/polymer interactions on the different PEC-SIM:CS:CMC ratios. In addition, the PEC-SIM:CS:CMC (1:2:1) complex exhibited a high ratio of protonated amino groups (NH3+) and an increase in intramolecular hydrogen bonds, which were correlated with a high expansion of the interpolymer chains and an increase in the SIM dissolution rate. Different kinetic models such as zero-order, first-order, Higuchi and Korsmeyer-Peppas were studied to evaluate the influence of CS/CMC ionic interactions on the ability to improve the release rate of poorly soluble drugs.
Collapse
Affiliation(s)
- Celia López-Manzanara Pérez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.L.-M.P.); (A.L.); (P.M.d.l.T.-I.)
| | - Norma Sofía Torres-Pabón
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain; (N.S.T.-P.); (G.T.)
| | - Almudena Laguna
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.L.-M.P.); (A.L.); (P.M.d.l.T.-I.)
| | - Guillermo Torrado
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain; (N.S.T.-P.); (G.T.)
| | - Paloma M. de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.L.-M.P.); (A.L.); (P.M.d.l.T.-I.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.L.-M.P.); (A.L.); (P.M.d.l.T.-I.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (C.L.-M.P.); (A.L.); (P.M.d.l.T.-I.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
6
|
Li Y, Luo XE, Tan MJ, Yue FH, Yao RY, Zeng XA, Woo MW, Wen QH, Han Z. Preparation of carboxymethylcellulose / ZnO / chitosan composite hydrogel microbeads and its drug release behaviour. Int J Biol Macromol 2023; 247:125716. [PMID: 37419258 DOI: 10.1016/j.ijbiomac.2023.125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
In this study, a novel carboxymethylcellulose / ZnO / chitosan (CMC / ZnO / Cs) hydrogel microbeads loaded with crosslinked porous starch / curcumin (CPS / Cur) were designed and prepared to improve the encapsulation efficiency of curcumin for drug delivery to specific sites. It was found that the total pore volume of crosslinked porous starch (CPS) was increased by 1150 % when compared to the native starch (NS), and the adsorption ratio of curcumin by CPS was enhanced by 27 % when compared to NS. Secondly, the swelling ratio of composite hydrogel microbeads was within 25 % in an acidic environment at pH 1.2, and the swelling ratio of hydrogel microbeads sharply increased to 320 % ~ 370 % at pH 6.8 and 7.4. In addition, the results of in vitro simulated release experiments showed that the released amount of hydrogel microbeads loaded with NS/Cur and CPS/Cur in SGF were within 7 % in simulated gastric fluid (SGF). The highest released amount of curcumin was 65.26 % for hydrogel beads loaded with CPS/Cur, which was 26 % lower than that of hydrogel microbeads loaded with Cur in simulated intestinal fluid (SIF). In simulated colonic fluid (SCF), the released amount of hydrogel microbeads loaded with CPS/Cur and Cur were 73.96 % and 91.69 %, respectively. In conclusion, pH-sensitive drug delivery system with good drug stability and bioavailability were successfully prepared with carboxymethylcellulose / ZnO / chitosan bead, suitable targeting drug delivery to the small intestine.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiu-Er Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ming-Jun Tan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fu-Hao Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Run-Yu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, Foshan University, Foshan 528000, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
| | - Meng-Wai Woo
- Department of chemical and materials engineering, University of Auckland, Auckland 1010, New Zealand
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
7
|
Wiwattanapatapee R, Klabklay K, Raksajit N, Siripruekpong W, Leelakanok N, Petchsomrit A. The development of an in-situ biopolymer-based floating gel for the oral delivery of metformin hydrochloride. Heliyon 2023; 9:e14796. [PMID: 37025765 PMCID: PMC10070646 DOI: 10.1016/j.heliyon.2023.e14796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetes remains a global public health threat because of its increasing prevalence and mortality, especially in people under the age of 25. Metformin hydrochloride (HCl), as recommended by American Diabetes Association in 2022, is the first-line therapy for type 2 diabetes in adults. Metformin has low oral bioavailability due to poor permeability. Therefore, by developing metformin HCl oral in situ gel, sustained delivery of metformin can be achieved, thus enhancing the absorption of the drug. Sodium alginate and pectin were used for formulating the system. Different adjuvant polymers, including HPMC K4M, HPMC K100 LV, PEG 4000, and SCMC were used as released-pattern-modifying agents. All formulations could afloat in 0.1 N HCl at the pH of 1.2 within a minute and stay afloat for over 8 h. The optimized formulation could be made from either sodium alginate (2%) and HPMC K4M (0.5%) or pectin (2%) and HPMC K4M (2%). The optimized formulations gradually released metformin HCl with a cumulative release of 80% within 8 h. We successfully developed floating in situ gels that can release metformin HCl sustainedly.
Collapse
|
8
|
Zeng W, Jiang C, Wu D. Heterogeneity Regulation of Bilayer Polysaccharide Hydrogels for Integrating pH- and Humidity-Responsive Actuators and Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16097-16108. [PMID: 36924131 DOI: 10.1021/acsami.3c01244] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bilayer hydrogel-based actuators have attracted much interest because inhomogeneous structures are easily constructed in hydrogels. We used three kinds of polysaccharides, including anionic carboxymethyl cellulose (CMC), cationic chitosan (CS), and amphoteric carboxymethyl chitosan (CMCS), as both structure-constructing units and actuation-controlling units in this work to fabricate physically crosslinked poly(vinyl alcohol) bilayer hydrogels. The spatial heterogeneity was tuned by changing the types and concentrations of polysaccharides in different layers, to regulate pH- and humidity-driven actions of bilayer hydrogels. Based on the distortion of the ionic channel during the humidity-motivated deformation of bilayer hydrogels, a two-in-one flexible device integrating a humidity-driven actuator and humidity-responsive sensor was then developed, which could detect the alterations of environmental humidity in real time. Moreover, good tensile toughness and interfacial bonding as well as the strain-resistance effect endowed the bilayer hydrogels with the capability of identifying human motion as a strain sensor, unlocking more application scenarios. This work provides an overall insight into the heterogeneity regulation of bilayer hydrogels using polysaccharides as stimulus-responsive units and also proposes an interesting strategy of manufacturing hydrogel-based flexible devices with both actuating and sensing capabilities.
Collapse
Affiliation(s)
- Wenjie Zeng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Chenguang Jiang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
- Provincial Key Laboratories of Environmental Materials & Engineering, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
9
|
Micro-/Nano-Carboxymethyl Cellulose as a Promising Biopolymer with Prospects in the Agriculture Sector: A Review. Polymers (Basel) 2023; 15:polym15020440. [PMID: 36679320 PMCID: PMC9860740 DOI: 10.3390/polym15020440] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The increase in the population rate has increased the demand for safe and quality food products. However, the current agricultural system faces many challenges in producing vegetables and fruits. Indiscriminate use of pesticides and fertilizers, deficiency of water resources, short shelf life of products postharvest, and nontargeted delivery of agrochemicals are the main challenges. In this regard, carboxymethyl cellulose (CMC) is one of the most promising materials in the agriculture sector for minimizing these challenges due to its mechanical strength, viscosity, wide availability, and edibility properties. CMC also has high water absorbency; therefore, it can be used for water deficiency (as superabsorbent hydrogels). Due to the many hydroxyl groups on its surface, this substance has high efficacy in removing pollutants, such as pesticides and heavy metals. Enriching CMC coatings with additional substances, such as antimicrobial, antibrowning, antioxidant, and antisoftening materials, can provide further novel formulations with unique advantages. In addition, the encapsulation of bioactive materials or pesticides provides a targeted delivery system. This review presents a comprehensive overview of the use of CMC in agriculture and its applications for preserving fruit and vegetable quality, remediating agricultural pollution, preserving water sources, and encapsulating bioactive molecules for targeted delivery.
Collapse
|
10
|
Ullah G, Nawaz A, Latif MS, Shah KU, Ahmad S, Javed F, Alfatama M, Abd Ghafar SA, Lim V. Clarithromycin and Pantoprazole Gastro-Retentive Floating Bilayer Tablet for the Treatment of Helicobacter Pylori: Formulation and Characterization. Gels 2023; 9:gels9010043. [PMID: 36661809 PMCID: PMC9858428 DOI: 10.3390/gels9010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bilayer/multilayer tablets have been introduced to formulate incompatible components for compound preparations, but they are now more commonly used to tailor drug release. This research aimed to formulate a novel gastro-retentive tablet to deliver a combination of a fixed dose of two drugs to eliminate Helicobacter pylori (H. pylori) in the gastrointestinal tract. The bilayer tablets were prepared by means of the direct compression technique. The controlled-release bilayer tablets were prepared using various hydrophilic swellable polymers (sodium alginate, chitosan, and HPMC-K15M) alone and in combination to investigate the percent of swelling behavior and average drug release. The weight of the controlled-release floating layer was 500 mg, whereas the weight of the floating tablets of pantoprazole was 100 mg. To develop the most-effective formulation, the effects of the experimental components on the floating lag time, the total floating time, T 50%, and the amount of drug release were investigated. The drugs' and excipients' compatibilities were evaluated using ATR-FTIR and DSC. Pre-compression and post-compression testing were carried out for the prepared tablets, and they were subjected to in vitro characterization studies. The pantoprazole layer of the prepared tablet demonstrated drug release (95%) in 2 h, whereas clarithromycin demonstrated sustained drug release (83%) for up to 24 h (F7). The present study concluded that the combination of sodium alginate, chitosan, and HPMC polymers (1:1:1) resulted in a gastro-retentive and controlled-release drug delivery system of the drug combination. Thus, the formulation of the floating bilayer tablets successfully resulted in a biphasic drug release. Moreover, the formulation (F7) offered the combination of two drugs in a single-tablet formulation containing various polymers (sodium alginate, chitosan, and HPMC polymers) as the best treatment option for local infections such as gastric ulcers.
Collapse
Affiliation(s)
- Ghufran Ullah
- Advanced Drug Delivery Laboratory, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Asif Nawaz
- Advanced Drug Delivery Laboratory, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
- Correspondence: (A.N.); (S.A.A.G.); (V.L.)
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Laboratory, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Kifayat Ullah Shah
- Advanced Drug Delivery Laboratory, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Saeed Ahmad
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24420, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Charsadda Road Larama, Peshawer 25000, Pakistan
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut, Terengganu 22200, Malaysia
| | - Siti Aisyah Abd Ghafar
- Department of Basic Science, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Ampang, Kuala Lumpur 55100, Malaysia
- Correspondence: (A.N.); (S.A.A.G.); (V.L.)
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia
- Correspondence: (A.N.); (S.A.A.G.); (V.L.)
| |
Collapse
|
11
|
Sahiner M, Suner SS, Yilmaz AS, Sahiner N. Polyelectrolyte Chondroitin Sulfate Microgels as a Carrier Material for Rosmarinic Acid and Their Antioxidant Ability. Polymers (Basel) 2022; 14:polym14204324. [PMID: 36297903 PMCID: PMC9611445 DOI: 10.3390/polym14204324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Polyelectrolyte microgels derived from natural sources such as chondroitin sulfate (CS) possess considerable interest as therapeutic carriers because of their ionic nature and controllable degradation capability in line with the extent of the used crosslinker for long-term drug delivery applications. In this study, chemically crosslinked CS microgels were synthesized in a single step and treated with an ammonia solution to attain polyelectrolyte CS-[NH4]+ microgels via a cation exchange reaction. The spherical and non-porous CS microgels were injectable and in the size range of a few hundred nanometers to tens of micrometers. The average size distribution of the CS microgels and their polyelectrolyte forms were not significantly affected by medium pH. It was determined that the -34 ± 4 mV zeta potential of the CS microgels was changed to -23 ± 3 mV for CS- [NH4]+ microgels with pH 7 medium. No important toxicity was determined on L929 fibroblast cells, with 76 ± 1% viability in the presence of 1000 μg/mL concentration of CS-[NH4]+ microgels. Furthermore, these microgels were used as a drug carrier material for rosmarinic acid (RA) active agent. The RA-loading capacity was about 2.5-fold increased for CS-[R]+ microgels with 32.4 ± 5.1 μg/mg RA loading, and 23% of the loaded RA was sustainably release for a long-term period within 150 h in comparison to CS microgels. Moreover, RA-loaded CS-[R]+ microgels exhibited great antioxidant activity, with 0.45 ± 0.02 μmol/g Trolox equivalent antioxidant capacity in comparison to no antioxidant properties for bare CS particles.
Collapse
Affiliation(s)
- Mehtap Sahiner
- Bioengineering Department, Engineering Faculty, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Selin S. Suner
- Department of Chemistry & Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Aynur S. Yilmaz
- Department of Chemistry & Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Nurettin Sahiner
- Department of Chemistry & Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA
- Correspondence:
| |
Collapse
|
12
|
Synthesis and Applications of Carboxymethyl Cellulose Hydrogels. Gels 2022; 8:gels8090529. [PMID: 36135241 PMCID: PMC9498359 DOI: 10.3390/gels8090529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Hydrogels are basic materials widely used in various fields, especially in biological engineering and medical imaging. Hydrogels consist of a hydrophilic three-dimensional polymer network that rapidly expands in water and can hold a large volume of water in its swelling state without dissolving. These characteristics have rendered hydrogels the material of choice in drug delivery applications. In particular, carboxymethyl cellulose (CMC) hydrogels have attracted considerable research attention for the development of safe drug delivery carriers because of their non-toxicity, good biodegradability, good biocompatibility and low immunogenicity. Aiming to inspire future research in this field, this review focuses on the current preparation methods and applications of CMC gels and highlights future lines of research for the further development of diverse applications.
Collapse
|
13
|
Silicon Oxycarbide Porous Particles and Film Coating as Strategies for Tenofovir Controlled Release in Vaginal Tablets for HIV Prevention. Pharmaceutics 2022; 14:pharmaceutics14081567. [PMID: 36015193 PMCID: PMC9416175 DOI: 10.3390/pharmaceutics14081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Sustained release of antiretroviral drugs is currently the most encouraging strategy for the prevention of the sexual transmission of HIV. Vaginal tablets based on hydrophilic gelling polymers are an interesting dosage form for this purpose, since they can be developed to modify the release of the drug depending on the tablet swelling. Tenofovir is a drug with proven activity in the prevention of HIV-1 infection, and it is possible to have it loaded in the surface of γ-aminopropyl trimethoxy silane-functionalized oxycarbide particles. These particles can be incorporated into the tablets, thus providing a sustained release of the drug. Moreover, the presence of the particles modifies the microstructure of the gel formed, as observed in scanning electron microscopy and Hg porosimetry studies, resulting into a gel with a narrow pore size distribution between 10 and 100 µm. This implies a lower volume of fluid incorporated into the gel during swelling studies, and therefore improved mucoadhesion times in ex vivo test. The coating of the formulations with Eudragit® RS modifies the swelling behavior of the tablets, which not only is decreased in magnitude but also extended in time, and as consequence the drug release is also prolonged for up to 7 days.
Collapse
|
14
|
Navarro-Ruíz E, Álvarez-Álvarez C, Peña MÁ, Torrado-Salmerón C, Dahma Z, de la Torre-Iglesias PM. Multiparticulate Systems of Meloxicam for Colonic Administration in Cancer or Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14071504. [PMID: 35890399 PMCID: PMC9322124 DOI: 10.3390/pharmaceutics14071504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this research is the development of new colonic release systems of meloxicam (MLX) a non-steroidal anti-inflammatory drug (NSAIDs) with pH and time-dependent vehicles for cancer or autoimmune diseases. The colon has a higher pH than the rest of the gastrointestinal tract (GIT) and this can be used as a modified release strategy. Eudragit® polymers are the most widely used synthetic products in the design of colonic release formulations because they might offer mucoadhesiveness and pH-dependent release. Colonic delivery systems produced with pH-dependent and permeable polymers (FS-30D) or with pH-independent and low permeability polymers (NM-30D), must dissolve at a pH range of 6.0–7.0 to delay the release of the drug and prevent degradation in the GIT, before reaching the colon. The conditions prepared to simulate a gastrointestinal transit showed the CNM multiparticulate system, composed of Eudragit® NM and cellulose, as the best release option for MLX with a more sustained release with respect to the other formulations. CNM formulation followed Higuchi and First-order release kinetics, thus MLX release was controlled by a combination of diffusion and polymers swelling/eroding processes.
Collapse
Affiliation(s)
- Eva Navarro-Ruíz
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
| | - Covadonga Álvarez-Álvarez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (C.Á.-Á.); (P.M.d.l.T.-I.); Tel.: +34-091-394-1741 (C.Á.-Á.); +34-091-394-1620 (P.M.d.l.T.-I.)
| | - M Ángeles Peña
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain;
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Zaid Dahma
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (C.Á.-Á.); (P.M.d.l.T.-I.); Tel.: +34-091-394-1741 (C.Á.-Á.); +34-091-394-1620 (P.M.d.l.T.-I.)
| |
Collapse
|
15
|
Zhang J, Wang Q, Shan Y, Guo Y, Mu W, Wei K, Sun Y. Effect of Sodium Carboxymethyl Cellulose on Water and Salt Transport Characteristics of Saline-Alkali Soil in Xinjiang, China. Polymers (Basel) 2022; 14:2884. [PMID: 35890661 PMCID: PMC9316802 DOI: 10.3390/polym14142884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
The scientific use of sodium carboxymethyl cellulose (CMC) to improve the production capacity of saline-alkali soil is critical to achieve green agriculture and sustainable land use. It serves as a foundation for the scientific use of CMC to clarify the water and salt transport characteristics of CMC-treated soil. In this study, a one-dimensional soil column infiltration experiment was carried out to investigate the effects of different CMC dosages (0, 0.2, 0.4, 0.6, and 0.8 g/kg) on the infiltration characteristics, infiltration model parameters, water and salt distribution, and salt leaching of saline-alkali soil in Xinjiang, China. The results showed that the final cumulative infiltration of CMC-treated soil increased by 8.63-20.72%, and the infiltration time to reach the preset wetting front depth increased by 1.02-3.96 times. The sorptivity (S) in the Philip infiltration model and comprehensive shape coefficient (α) in the algebraic infiltration model showed a trend of increasing first and then decreasing with CMC dosage, revealing a quadratic polynomial relationship. The algebraic model could accurately simulate the water content profile of CMC-treated soil. CMC enhanced the soil water holding capacity and salt leaching efficiency. The average soil water content, desalination rate, and leaching efficiency were increased by 5.18-15.54%, 21.17-57.15%, and 11.61-30.18%, respectively. The effect of water retention and salt inhibition on loamy sand was the best when the CMC dosage was 0.6 g/ kg. In conclusion, the results provide a theoretical basis for the rational application of CMC to improve saline-alkali soil in arid areas.
Collapse
Affiliation(s)
- Jihong Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (J.Z.); (Y.S.); (Y.G.); (W.M.); (K.W.); (Y.S.)
- College of Water Resources and Architectural Engineering, Shihezi University, Shihezi 832000, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832000, China
| | - Quanjiu Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (J.Z.); (Y.S.); (Y.G.); (W.M.); (K.W.); (Y.S.)
| | - Yuyang Shan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (J.Z.); (Y.S.); (Y.G.); (W.M.); (K.W.); (Y.S.)
| | - Yi Guo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (J.Z.); (Y.S.); (Y.G.); (W.M.); (K.W.); (Y.S.)
| | - Weiyi Mu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (J.Z.); (Y.S.); (Y.G.); (W.M.); (K.W.); (Y.S.)
| | - Kai Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (J.Z.); (Y.S.); (Y.G.); (W.M.); (K.W.); (Y.S.)
| | - Yan Sun
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (J.Z.); (Y.S.); (Y.G.); (W.M.); (K.W.); (Y.S.)
| |
Collapse
|
16
|
Gopinath V, Kamath SM, Priyadarshini S, Chik Z, Alarfaj AA, Hirad AH. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed Pharmacother 2021; 146:112492. [PMID: 34906768 DOI: 10.1016/j.biopha.2021.112492] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of clinical complications and therapeutic challenges for treating various diseases necessitate the discovery of novel restorative functional materials. Polymer-based drug delivery systems have been extensively reported in the last two decades. Recently, there has been an increasing interest in the progression of natural biopolymers based controlled therapeutic strategies, especially in drug delivery and tissue engineering applications. However, the solubility and functionalisation due to their complex network structure and intramolecular bonding seem challenging. This review explores the current advancement and prospects of the most promising natural polymers such as cellulose, starch and their derivatives-based drug delivery vehicles like hydrogels, films and composites, in combating major ailments such as bone infections, microbial infections, and cancers. In addition, selective drug targeting using metal-drug (MD) and MD-based polymeric missiles have been exciting but challenging for its application in cancer therapeutics. Owing to high biocompatibility of starch and cellulose, these materials have been extensively evaluated in biomedical and pharmaceutical applications. This review presents a detailed impression of the current trends for the construction of biopolymer-based tissue engineering, drug/gene/protein delivery vehicles.
Collapse
Affiliation(s)
- V Gopinath
- University of Malaya Centre for Proteomics Research, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - S Manjunath Kamath
- Department of Translational Medicine and Research, SRM Medical College Hospital and Research, SRMIST, Kattankulathur 603203, India.
| | - S Priyadarshini
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abdurahman H Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Epoxy-Based Interlocking Membranes for All Solid-State Lithium Ion Batteries: The Effects of Amine Curing Agents on Electrochemical Properties. Polymers (Basel) 2021; 13:polym13193244. [PMID: 34641061 PMCID: PMC8513100 DOI: 10.3390/polym13193244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, a series of crosslinked membranes were prepared as solid polymer electrolytes (SPEs) for all-solid-state lithium ion batteries (ASSLIBs). An epoxy-containing copolymer (glycidyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate, PGA) and two amine curing agents, linear Jeffamine ED2003 and hyperbranched polyethyleneimine (PEI), were utilized to prepare SPEs with various crosslinking degrees. The PGA/polyethylene oxide (PEO) blends were cured by ED2003 and PEI to obtain slightly and heavily crosslinked structures, respectively. For further optimizing the interfacial and the electrochemical properties, an interlocking bilayer membrane based on overlapping and subsequent curing of PGA/PEO/ED2003 and PEO/PEI layers was developed. The presence of this amino/epoxy network can inhibit PEO crystallinity and maintain the dimensional stability of membranes. For the slightly crosslinked PGA/PEO/ED2003 membrane, an ionic conductivity of 5.61 × 10−4 S cm−1 and a lithium ion transference number (tLi+) of 0.43 were obtained, along with a specific capacity of 156 mAh g−1 (0.05 C) acquired from an assembled half-cell battery. However, the capacity retention retained only 54% after 100 cycles (0.2 C, 80 °C), possibly because the PEO-based electrolyte was inclined to recrystallize after long term thermal treatment. On the other hand, the highly crosslinked PGA/PEO/PEI membrane exhibited a similar ionic conductivity of 3.44 × 10−4 S cm−1 and a tLi+ of 0.52. Yet, poor interfacial adhesion between the membrane and the cathode brought about a low specific capacity of 48 mAh g−1. For the reinforced interlocking bilayer membrane, an ionic conductivity of 3.24 × 10−4 S cm−1 and a tLi+ of 0.42 could be achieved. Moreover, the capacity retention reached as high as 80% after 100 cycles (0.2 C, 80 °C). This is because the presence of the epoxy-based interlocking bilayer structure can block the pathway of lithium dendrite puncture effectively. We demonstrate that the unique interlocking bilayer structure is capable of offering a new approach to fabricate a robust SPE for ASSLIBs.
Collapse
|