1
|
Ducoli S, Rani M, Marchesi C, Speziani M, Zacco A, Gavazzi G, Federici S, Depero LE. Comparison of different fragmentation techniques for the production of true-to-life microplastics. Talanta 2025; 283:127106. [PMID: 39488155 DOI: 10.1016/j.talanta.2024.127106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Microplastics are small plastic particles found widely in the environment, posing significant challenges as diverse environmental contaminants. Their pervasive presence and potential impacts on ecosystems and human health underscore the importance of research in this field. However, working with microplastics in the laboratory and field can be challenging due to the difficulty in creating particles that are similar to those found in the environment. The advancement of research in this area is, therefore, dependent on the availability of reference materials or representative test materials that can simulate real-world conditions. One of the biggest challenges in creating more relevant test microplastics is investigating processes that can mimic as close as possible the environmental counterpart. To tackle this challenge, we have explored three distinct cryogenic grinding techniques for generating microplastics on a laboratory scale (ultracentrifugal mill, immersion blender, mixer mill). The resulting products were examined, and the advantages and limitations of the technologies were analyzed to gain deeper insights into the correlation between the various techniques utilized and the distinctive characteristics of the "true-to-life" microplastics produced. This allows us to tailor the production of test materials to the specific research questions they are intended to address. Furthermore, by understanding the characteristics of true-to-life microplastics, we can gain insights into their behavior under various environmental conditions. This knowledge can help in developing better methods for detecting and monitoring microplastics in the environment, as well as developing more effective mitigation strategies to reduce their impact.
Collapse
Affiliation(s)
- S Ducoli
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy
| | - M Rani
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy
| | - C Marchesi
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy
| | - M Speziani
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy
| | - A Zacco
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy
| | - G Gavazzi
- Verder Scientific-Retsch, Via Pino Longhi 12, 24066, Pedrengo, Bergamo, Italy
| | - S Federici
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy.
| | - Laura E Depero
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123, Brescia, Italy; National Interuniversity Consortium of Materials Science and Technology, INSTM, via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
2
|
Beggel S, Kalis EJJ, Geist J. Towards harmonized ecotoxicological effect assessment of micro- and nanoplastics in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125504. [PMID: 39662584 DOI: 10.1016/j.envpol.2024.125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Micro- and nanoplastics are globally important environmental pollutants. Although research in this field is continuously improving, there are a number of uncertainties, inconsistencies and methodological challenges in the effect assessment of micro- and nanoparticles in freshwater systems. The current understanding of adverse effects is partly biased by the use of non-relevant particle types, unsuitable test setups and environmentally unrealistic dose metrics, which does not take into account realistic processes in particle uptake and consequent effects. Here we summarize the current state of the art by compiling the most recent research with the aim to highlight research gaps and further necessary steps towards more harmonized testing systems. In particular, ecotoxicological scenarios need to mirror environmentally realistic particle diversity and bioavailability. Harmonized test setups should include different uptake pathways, exposures and comparisons with natural reference particles. Effect assessments need to differentiate direct physical particle effects, such as lesions and toxicity caused by the polymer, from indirect effects, such as alterations of ambient environmental conditions by leaching, change of turbidity, food dilution and organisms' behavior. Implementation of these suggestions can contribute to harmonization and more effective, evidence-based assessments of the ecotoxicological effects of micro- and nanoplastics.
Collapse
Affiliation(s)
- Sebastian Beggel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Erwin J J Kalis
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany.
| |
Collapse
|
3
|
Fleury JB, Baulin VA. Aging affects the mechanical interaction between microplastics and lipid bilayers. J Chem Phys 2024; 161:144902. [PMID: 39377336 DOI: 10.1063/5.0232678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Plastic pellets, the pre-production form of many plastic products, undergo oxidation and photodegradation upon exposure to oxygen and sunlight, resulting in visible color changes. This study examines the impact of environmental aging on the mechanical interactions between pellet-derived microplastics and lipid bilayers, a critical component of biological membranes. Polyethylene pellets were collected from La Pineda beach near Tarragona, Spain, and categorized by chemical composition and yellowing index, an indicator of aging. The hydrophilicity of these pellets was assessed using contact angle measurements. Microplastics were produced by grinding and filtering these pellets and subsequently dispersed around a free-standing lipid bilayer within a 3D microfluidic chip to investigate their interactions. Our results reveal that aged microplastics exhibit a significantly increased adhesive interaction with lipid bilayers, leading to greater bilayer stretching. Theoretical modeling indicates a linear relationship between the adhesive interaction and the contact angle of the pellets, reflecting their hydrophilicity. These findings emphasize the increased mechanical impact of aged microplastics on biological membranes, which raises concerns about their potential toxicological effects on living organisms. This study highlights the importance of understanding the interactions between environmentally aged microplastics and biological systems to assess their risks, as these may differ significantly from pristine microplastics often studied under laboratory conditions.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
4
|
Gouin T, Ellis-Hutchings R, Pemberton M, Wilhelmus B. Addressing the relevance of polystyrene nano- and microplastic particles used to support exposure, toxicity and risk assessment: implications and recommendations. Part Fibre Toxicol 2024; 21:39. [PMID: 39334292 PMCID: PMC11429038 DOI: 10.1186/s12989-024-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND There has been an exponential increase in the number of studies reporting on the toxicological effects associated with exposure to nano and microplastic particles (NMPs). The majority of these studies, however, have used monodispersed polystyrene microspheres (PSMs) as 'model' particles. Here we review the differences between the manufacture and resulting physicochemical properties of polystyrene used in commerce and the PSMs most commonly used in toxicity studies. MAIN BODY In general, we demonstrate that significant complexity exists as to the properties of polystyrene particles. Differences in chemical composition, size, shape, surface functionalities and other aspects raise doubt as to whether PSMs are fit-for-purpose for the study of potential adverse effects of naturally occurring NMPs. A realistic assessment of potential health implications of the exposure to environmental NMPs requires better characterisation of the particles, a robust mechanistic understanding of their interactions and effects in biological systems as well as standardised protocols to generate relevant model particles. It is proposed that multidisciplinary engagement is necessary for the development of a timely and effective strategy towards this end. We suggest a holistic framework, which must be supported by a multidisciplinary group of experts to work towards either providing access to a suite of environmentally relevant NMPs and/or developing guidance with respect to best practices that can be adopted by research groups to generate and reliably use NMPs. It is emphasized that there is a need for this group to agree to a consensus regarding what might best represent a model NMP that is consistent with environmental exposure for human health, and which can be used to support a variety of ongoing research needs, including those associated with exposure and hazard assessment, mechanistic toxicity studies, toxicokinetics and guidance regarding the prioritization of plastic and NMPs that likely represent the greatest risk to human health. It is important to acknowledge, however, that establishing a multidisciplinary group, or an expert community of practice, represents a non-trivial recommendation, and will require significant resources in terms of expertise and funding. CONCLUSION There is currently an opportunity to bring together a multidisciplinary group of experts, including polymer chemists, material scientists, mechanical engineers, exposure and life-cycle assessment scientists, toxicologists, microbiologists and analytical chemists, to provide leadership and guidance regarding a consensus on defining what best represents environmentally relevant NMPs. We suggest that given the various complex issues surrounding the environmental and human health implications that exposure to NMPs represents, that a multidisciplinary group of experts are thus critical towards helping to progress the harmonization and standardization of methods.
Collapse
Affiliation(s)
- Todd Gouin
- TG Environmental Research, 18 Wellpond Close, Sharnbrook, UK.
| | | | | | - Bianca Wilhelmus
- INEOS Styrolution Group GmbH, Mainzer Landstraße 50, 60325, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Chen CY, Lin Z. Exploring the potential and challenges of developing physiologically-based toxicokinetic models to support human health risk assessment of microplastic and nanoplastic particles. ENVIRONMENT INTERNATIONAL 2024; 186:108617. [PMID: 38599027 DOI: 10.1016/j.envint.2024.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pollution has emerged as a significant and widespread environmental issue. Humans are inevitably exposed to MPs and NPs via ingestion, inhalation, and dermal contacts from various sources. However, mechanistic knowledge of their distribution, interaction, and potency in the body is still lacking. To address this knowledge gap, we have undertaken the task of elucidating the toxicokinetic (TK) behaviors of MPs and NPs, aiming to provide mechanistic information for constructing a conceptual physiologically based toxicokinetic (PBTK) model to support in silico modeling approaches. Our effort involved a thorough examination of the existing literature and data collation on the presence of MPs in the human body and in vitro/ex vivo/in vivo biodistribution across various cells and tissues. By comprehending the absorption, distribution, metabolism, and excretion mechanisms of MPs and NPs in relation to their physicochemical attributes, we established a foundational understanding of the link between external exposure and internal tissue dosimetry. We observed that particle size and surface chemistry have been thoroughly explored in previous experimental studies. However, certain attributes, such as polymer type, shape, and biofilm/biocorona, warrant attention and further examination. We discussed the fundamental disparities in TK properties of MPs/NPs from those of engineered nanoparticles. We proposed a preliminary PBTK framework with several possible modeling approaches and discussed existing challenges for further investigation. Overall, this article provides a comprehensive compilation of existing TK data of MPs/NPs, a critical overview of TK processes and mechanisms, and proposes potential PBTK modeling approaches, particularly regarding their applicability to the human system, and outlines future perspectives for developing PBTK models and their integration into human health risk assessment of MPs and NPs.
Collapse
Affiliation(s)
- Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States.
| |
Collapse
|
6
|
Rodríguez-Alcántara JS, Contreras-Llin A, Cruz-Pérez N, García-Gil A, Baquedano C, Marazuela MÁ, Diaz-Cruz MS, León JM, Santamarta JC. Presence of microplastics in the groundwater of volcanic islands, El Hierro and La Palma (Canary Islands). JOURNAL OF CONTAMINANT HYDROLOGY 2024; 263:104340. [PMID: 38608419 DOI: 10.1016/j.jconhyd.2024.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
The increasing amount of plastic litter worldwide is a serious problem for the environment and its biodiversity, ecosystems, animal and human welfare and the economy. The degradation of these plastics leads to microplastics (MPs), which have been reported for the first time in groundwater in the Canary archipelago. This research investigates the presence of MPs at nine different points on La Palma and El Hierro, where samples were collected in galleries, wells and springs during the month of December 2022. Six different polymers were found with Fourier transform infrared spectroscopy (FTIR) - polypropylene (PP), polyethylene (PE), cellulose (CEL), polyethylene terephthalate (PET), polystyrene (PS) and polymethyl methacrylate (PMMA). The particle concentrations found ranged from 1 to 23 n/L, with a maximum particle size of 1900 μm, the smallest being 35 μm. PP and PE were the most common polymers found in the analysis, associated with the use of packaging, disposable products, textiles and water pipes, related to poorly maintained sewerage networks where leaks occur, allowing these MPs to escape into the environment and end up in groundwater. The detection of microplastic pollution in groundwater emphasises environmental hazards, including biodiversity disruption and water source contamination. Additionally, it presents potential risks to human health by transferring contaminants into the food chain and through respiratory exposure.
Collapse
Affiliation(s)
| | - Albert Contreras-Llin
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Noelia Cruz-Pérez
- Departamento de Ingeniería Agraria y del Medio Natural, Universidad de La Laguna (ULL), Tenerife, Spain.
| | - Alejandro García-Gil
- Geological Survey of Spain (IGME), Spanish National Research Council (CSIC), Madrid, Spain.
| | - Carlos Baquedano
- Geological Survey of Spain (IGME), Spanish National Research Council (CSIC), Madrid, Spain.
| | - Miguel Ángel Marazuela
- Geological Survey of Spain (IGME), Spanish National Research Council (CSIC), Madrid, Spain.
| | - M Silvia Diaz-Cruz
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Jorge Martínez León
- Geological Survey of Spain (IGME), Spanish National Research Council (CSIC), Madrid, Spain.
| | - Juan C Santamarta
- Departamento de Ingeniería Agraria y del Medio Natural, Universidad de La Laguna (ULL), Tenerife, Spain.
| |
Collapse
|
7
|
Hrovat B, Uurasjärvi E, Viitala M, Del Pino AF, Mänttäri M, Papamatthaiakis N, Haapala A, Peiponen K, Roussey M, Koistinen A. Preparation of synthetic micro- and nano plastics for method validation studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171821. [PMID: 38513866 DOI: 10.1016/j.scitotenv.2024.171821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Microplastic (MP) pollution is a persisting global problem. Accurate analysis is essential in quantifying the effects of microplastic pollution and develop novel technologies that reliably and reproducibly measure microplastic content in various samples. The most common methods for this are FTIR and Raman spectroscopy. Coloured, standardized beads are often used for method validation tests, which limits the conclusions to a very specific case rarely observed in the natural environment. This study focuses on the preparation of reference micro- and nanoplastics via cryogenic milling and shows their use for FTIR and Raman method validation studies. MPs can now be reproducibly milled from various plastics, offering the advantages of a better representation of MPs in real environment. Moreover, this study highlights issues with the current detection methods, up to now considered as the most reliable ones for MP detection and identification. Such issues, e.g. misidentification, will need to be addressed in the future. Additionally, milled MPs were used in experiments with commercial high-resolution imaging device, enabling a possible in-situ optical detection of microplastics. These experiments represent a step forward in understanding MPs in a water sample and provide a basis for a more accurate detection and identification directly from water, which would considerably reduce the time of analysis.
Collapse
Affiliation(s)
- Blaž Hrovat
- University of Eastern Finland, Department of Technical Physics, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Emilia Uurasjärvi
- University of Eastern Finland, Department of Technical Physics, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mirka Viitala
- Lappeenranta-Lahti University of Technology LUT, Department of Separation Science, Sammonkatu 12, 50130 Mikkeli, Finland
| | - Ana Franco Del Pino
- Lappeenranta-Lahti University of Technology LUT, Department of Separation Science, Sammonkatu 12, 50130 Mikkeli, Finland; University of Cádiz, Department of Environmental Technology, 11510 Puerto Real, Cádiz, Spain
| | - Mika Mänttäri
- Lappeenranta-Lahti University of Technology LUT, Department of Separation Science, Sammonkatu 12, 50130 Mikkeli, Finland
| | | | - Antti Haapala
- University of Eastern Finland, Department of Chemistry, P.O. Box 111, 80101 Joensuu, Finland; FSCN Research Centre, Mid Sweden University, SE-85170 Sundsvall, Sweden
| | - Kai Peiponen
- University of Eastern Finland, Center for Photonics Sciences, Department of Physics and Mathematics, P.O. Box 111, 80101 Joensuu, Finland
| | - Matthieu Roussey
- University of Eastern Finland, Center for Photonics Sciences, Department of Physics and Mathematics, P.O. Box 111, 80101 Joensuu, Finland
| | - Arto Koistinen
- University of Eastern Finland, Department of Technical Physics, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
8
|
Grifoni M, Pellegrino E, Arrighetti L, Bronco S, Pezzarossa B, Ercoli L. Interactive impacts of microplastics and arsenic on agricultural soil and plant traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169058. [PMID: 38070573 DOI: 10.1016/j.scitotenv.2023.169058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The ability of microplastics (MPs) to interact with environmental pollutants is currently of great concern due to the increasing use of plastic. Agricultural soils are sinks for multipollutants and the safety of biodegradable MPs in field conditions is questioned. However, still few studies have investigated the interactive effects between MPs and metals on the soil-plant system with agricultural soil and testing crops for human consumption. In this work, we tested the effect on soil and plant parameters of two common MPs, non-degradable plastic low-density polyethylene and biodegradable polymer polylactic acid at two different sizes (<250 μm and 250-300 μm) in association with arsenic (As). Lettuce (Lactuca sativa L.) was used as a model plant in a small-scale experiment lasting 60 days. Microplastics and As explained 12 % and 47 % of total variance, respectively, while their interaction explained 21 %, suggesting a higher toxic impact of As than MPs. Plant growth was promoted by MPs alone, especially when biodegradable MPs were added (+22 %). However, MPs did not affect nutrient concentrations in roots and leaves. The effect of MPs on enzyme activities was variable depending on the time of exposure (with larger effects immediately after exposure), the type and size of the MPs. On the contrary, the co-application of MP and As, although it did not change the amount of bioavailable As in soil in the short and medium term, it resulted in a significant decrease in lettuce biomass (-19 %) and root nutrient concentrations, especially when polylactic acid was applied. Generally, MPs in association with As determined the plant-soil toxicity. This work provides insights into the risk of copollution of MPs and As in agricultural soil and its phytotoxic effect for agricultural crops. However, the mechanisms of the joint effect of MP and As on plant toxicity need further investigation, especially under field conditions and in long-term experiments.
Collapse
Affiliation(s)
- Martina Grifoni
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Elisa Pellegrino
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | - Leonardo Arrighetti
- Institute for Chemical and Physical Processes, Consiglio Nazionale delle Ricerche, CNR-IPCF, 56127 Pisa, Italy
| | - Simona Bronco
- Institute for Chemical and Physical Processes, Consiglio Nazionale delle Ricerche, CNR-IPCF, 56127 Pisa, Italy
| | - Beatrice Pezzarossa
- Research Institute on Terrestrial Ecosystems, Consiglio Nazionale delle Ricerche, CNR-IRET, 56127 Pisa, Italy
| | - Laura Ercoli
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| |
Collapse
|
9
|
Lee SE, Yoon HK, Kim DY, Jeong TS, Park YS. An Emerging Role of Micro- and Nanoplastics in Vascular Diseases. Life (Basel) 2024; 14:255. [PMID: 38398764 PMCID: PMC10890539 DOI: 10.3390/life14020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vascular diseases are the leading causes of death worldwide, and they are attributable to multiple pathologies, such as atherosclerosis, diabetes, and chronic obstructive pulmonary disease. Exposure to various environmental contaminants is associated with the development of various diseases, including vascular diseases. Among environmental contaminants, micro- and nanoplastics have gained attention as global environmental risk factors that threaten human health. Recently, extensive research has been conducted on the effects of micro- and nanoplastics on various human diseases, including vascular diseases. In this review, we highlight the effects of micro- and nanoplastics on vascular diseases.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Kyung Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Do Yun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Taek Seung Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Mao H, Yang H, Xu Z, Peng Q, Yang S, Zhu L, Yang Y, Li Z. Responses of submerged macrophytes to different particle size microplastics and tetracycline co-pollutants at the community and population level. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132994. [PMID: 37988943 DOI: 10.1016/j.jhazmat.2023.132994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Microplastics (MPs) and antibiotics are ubiquitous in aquatic ecosystems, and their accumulation and combined effects are considered emerging threats that may affect biodiversity and ecosystem function. The particle size of microplastics plays an important role in their combined effects with antibiotics. Submerged macrophytes are crucial in maintaining the health and stability of freshwater ecosystems. However, little is known about the combined effects of different particle size of MPs and antibiotics on freshwater plants, particularly their effects on submerged macrophyte communities. Thus, there is an urgent need to study their effects on the macrophyte communities to provide essential information for freshwater ecosystem management. In the present study, a mesocosm experiment was conducted to explore the effects of three particle sizes (5 µm, 50 µm, and 500 µm) of polystyrene-microplastics (PSMPs) (75 mg/L), tetracycline (TC) (50 mg/L), and their co-pollutants on interactions between Hydrilla verticillata and Elodea nuttallii. Our results showed that the effects of MPs are size-dependent on macrophytes at the community level rather than at the population level, and that small and medium sized MPs can promote the growth of the two test macrophytes at the community level. In addition, macrophytes at the community level have a stronger resistance to pollutant stress than those at the population level. Combined exposure to MPs and TC co-pollutants induces species-specific responses and antagonistic toxic effects on the physio-biochemical traits of submerged macrophytes. Our study provides evidence that MPs and co-pollutants not only affect the morphology and physiology at the population level but also the interactions between macrophytes. Thus, there are promising indications on the potential consequences of MPs and co-pollutants on macrophyte community structure, which suggests that future studies should focus on the effects of microplastics and their co-pollutants on aquatic macrophytes at the community level rather than only at the population level. This will improve our understanding of the profound effects of co-pollutants in aquatic environments on the structure and behavior of aquatic communities and ecosystems.
Collapse
Affiliation(s)
- Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Shiwen Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Lin Zhu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Sadraddin A. Synthesis and characterization of novel thermoresponsive suspensions via physical adsorption of poly[di(ethylene glycol) methyl methacrylate] onto polystyrene microparticles. Des Monomers Polym 2023; 26:163-170. [PMID: 37181151 PMCID: PMC10173789 DOI: 10.1080/15685551.2023.2211356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
Thermoreversible colloidal suspensions/gels have attracted recent research attention in the field of biomedical applications. In this study, a novel thermoresponsive particle suspension with thermoreversible gelation properties has been prepared for biomedical application. First, polystyrene (PS) microspheres were synthesized by dispersion polymerization and poly diethyleneglycolmethylmethacrylate (PDEGMA) polymer were synthesized via free radical polymerisation. Then, the new developed thermoresponsive suspensions were prepared via physical adsorption of a thermoresponsive polymer, poly[di (ethylene glycol) methyl methacrylate] (PDEGMA), onto the surface of polystyrene microspheres. PDEGMA acts as a steric stabilizer and induces thermoreversible gelation via chain extending and collapsing below and above its lower critical solution temperature (LCST), respectively. Scanning electron microscopy (SEM), 1H NMR spectroscopy, Gel permeation chromatography (GPC), UV-vis spectroscopy, Rheometric measurement were conducted to characterize the prepared particles, polymers and suspensions. SEM images show that monodisperse microspheres with the sizes range 1.5-3.5 μm were prepared. UV-vis measurements demonstrate thermoresponsive properties of PDEGMA. 1H NMR and GPC analysis confirms structural properties of prepared PDEGMA. Tube inversion tests demonstrated that the aqueous suspensions of the particles and polymer exhibited thermoreversible fluid-to-gel transitions. Rheological characterization revealed that the viscoelastic properties of the prepared suspension/gels can be fine tuned. This enables applications of the prepared gels as scaffolds for three-dimensional (3D) cell cultures.
Collapse
Affiliation(s)
- Azad Sadraddin
- Chemistry Department, Education College, Salahaddin University, Iraqi kurdistan, Iraq
| |
Collapse
|
12
|
Harikrishnan T, Janardhanam M, Sivakumar P, Sivakumar R, Rajamanickam K, Raman T, Thangavelu M, Muthusamy G, Singaram G. Microplastic contamination in commercial fish species in southern coastal region of India. CHEMOSPHERE 2023; 313:137486. [PMID: 36513204 DOI: 10.1016/j.chemosphere.2022.137486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Due to its potential impact on food safety and human health, commercial species that have been contaminated with microplastics (MPs) are drawing more attention on a global scale. This study investigated the possibility of MPs contamination in different marine fish species with substantial commercial value that was captured off the south coast of India, from Adyar and Ennore regions. Over the course of six months, from October 2019 to March 2020, 220 fish were examined. It was discovered that the gills and guts had accumulated more numbers of MPs (1115 MPs) of which 68% were fibres and fragments. The commercial fish samples contained an average of 3.2-7.6 MPs per fish. Greater MPs pollution is seen in the Ennore regions. The prevalence of MPs was observed in carnivorous and planktivorous fish collected from both the sites. Fish guts contained the most MPs, according to the data. Pelagic fish accounted for the least amount of MPs, followed by mid- and demersal fish. Four different types of polymers were also identified in the present study: polyethylene, polypropylene, polystyrene, and polyamide. These results clearly showed the degree of microplastic contamination in fish tissues from the south Indian coastal regions of Adyar and Ennore. These results we hope will create a baseline data for MPs contamination in commercial fish species. The presence of MPs in the fish could have detrimental effects both on the environment and human health and thus comprehensive steps are required to prevent plastic pollution of the environment in south India's coastal region.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai, 600 030, India
| | - Madhuvandhi Janardhanam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai, 600 030, India
| | - Priya Sivakumar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai, 600 030, India
| | - Rekha Sivakumar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai, 600 030, India
| | - Krishnamurthy Rajamanickam
- PG and Research Department of Zoology and Aquaculture, Government Arts College for Men (Autonomous), (Affiliated to University of Madras), Chennai, 600 035, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai, 600 004, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech & Dept PolymerNano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India.
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, 600106, Tamil Nadu, India.
| |
Collapse
|
13
|
Characterisation of different manufactured plastic microparticles and their comparison to environmental microplastics. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|