1
|
Zarei M, Żwir MJ, Michalkiewicz B, Gorący J, El Fray M. Template-Assisted Electrospinning and 3D Printing of Multilayered Hierarchical Vascular Grafts. J Biomed Mater Res B Appl Biomater 2025; 113:e35525. [PMID: 39737747 DOI: 10.1002/jbm.b.35525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025]
Abstract
Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques. The outer layer was fabricated by template-assisted electrospinning utilizing a 3D-printed scaffold with a precise hexagonal pore design as the template, and the inner layer was coated with gelatin through perfusion. Cellulose nanocrystals (CNCs) were incorporated into electrospun fibers to enhance mechanical properties. The gelatin coating was applied to the lumen using perfusion coating, resembling the inner layer. Integration of 3D-printed structures with electrospun fibers via template-assisted electrospinning and gelatin coating resulted in a seamless multilayered scaffold. Mechanical testing demonstrated robustness, surpassing natural arteries in some aspects, while the gelatin coating significantly reduced liquid leakage, ensuring leak-free functionality. Cytotoxicity assessment confirmed the biocompatibility of processed materials with fibroblast cells, supporting potential for medical applications.
Collapse
Affiliation(s)
- Moein Zarei
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Marek J Żwir
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Beata Michalkiewicz
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Jarosław Gorący
- Department of Cardiology, & Independent Laboratory of Invasive Cardiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| |
Collapse
|
2
|
Kiany F, Sarafraz N, Tanideh N, Bordbar H, Andisheh-Tadbir A, Zare S, Farshidfar N, Zarei M. Bone repair potential of collagen-poly(3-hydroxybutyrate)-carbon nanotubes scaffold loaded with mesenchymal stem cells for the reconstruction of critical-sized mandibular defects. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101670. [PMID: 37907130 DOI: 10.1016/j.jormas.2023.101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
The poor structural stability of collagen (COL) upon hydration poses a significant challenge in tissue engineering (TE). To overcome this limitation, the incorporation of hydrophobic polymers such as poly(3-hydroxybutyrate) (PHB), and nanomaterials such as carbon nanotubes (CNTs) has been explored. In this study, we investigated the physical, chemical, and biological characteristics of COL-based scaffolds modified with PHB and CNTs for bone tissue engineering (BTE) applications. The tensile strength analysis revealed a substantial improvement in the ultimate tensile strength with the addition of 10 % PHB and 4 % CNTs. Scanning electron microscopy (SEM) images depicted a denser and more compact structure resulting from the presence of PHB and CNTs, enhancing the scaffold's mechanical properties. Fourier-transform infrared spectroscopy (FTIR) confirmed the successful incorporation of PHB and CNTs into the composite scaffold, maintaining the chemical integrity of COL. Stereological studies also conducted in a rat model with induced critical-sized bone defects in the mandibular bone further emphasize the substantial increase in bone formation and reduction in defect volume achieved by the scaffold loaded with stem cells. These findings underscore the promising approach to enhance bone healing, using COL-based scaffolds loaded with stem cells, and the favorable results obtained in this study can contribute to the advancement of BTE strategies.
Collapse
Affiliation(s)
- Farin Kiany
- Department of Periodontics, Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sarafraz
- Department of Periodontology, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bordbar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Andisheh-Tadbir
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Farshidfar
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Zarei
- Department of Polymer and Biomaterials Science, West Pomeranian University of Technology, Szczecin, Poland.
| |
Collapse
|
3
|
Zerigui H, Labied R, Chebout R, Bachari K, Meghaber R, Zeggai FZ. Green synthesis of new and natural diester based on gallic acid and polyethylene glycol. F1000Res 2023; 12:1384. [PMID: 39296352 PMCID: PMC11408915 DOI: 10.12688/f1000research.139861.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 09/21/2024] Open
Abstract
Background Antioxidant polyphenols like gallic acid (GA) and its esters called "gallates", which have health advantages for humans, have grown in significance in maintaining a healthy lifestyle and eating a significant amount of secondary plant phytochemicals. Here, for the first time, we suggest a green synthesis of a brand-new, all-natural diester based on gallic acid and polyethylene glycol. Methods This di-gallate is created in a single step without the use of a solvent (solid-solid reaction). This reaction has a potential yield of up to 90%. The bathochromic shift of the absorption bands from 277 nm to 295 nm in the UV-VIS spectra was caused by the addition of PEG to gallic acid. To confirm the structure of this di-gallate; Fourier-transform infrared (FTIR) spectroscopy, proton and carbon nuclear magnetic resonance ( 1H and 13C NMR), the thermal stability identified by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were all used to thoroughly analyze the manufactured product. Results and conclusions The acquired results, when compared to the literature spectrums, supported the establishment of the di-ester structure and created new opportunities for a large number of applications.
Collapse
Affiliation(s)
- Hafida Zerigui
- Laboratoire de chimie des polymères, Université Oran1 Ahmed Benbella, BP 1524, El'Menouer, Oran, 31000, Algeria
| | - Radia Labied
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, Tipaza, Algeria, 42004, Algeria
| | - Redouane Chebout
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, Tipaza, Algeria, 42004, Algeria
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, Tipaza, Algeria, 42004, Algeria
| | - Rachid Meghaber
- Laboratoire de chimie des polymères, Université Oran1 Ahmed Benbella, BP 1524, El'Menouer, Oran, 31000, Algeria
| | - Fatima Zohra Zeggai
- Laboratoire de chimie des polymères, Université Oran1 Ahmed Benbella, BP 1524, El'Menouer, Oran, 31000, Algeria
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, Tipaza, Algeria, 42004, Algeria
| |
Collapse
|
4
|
Elchiev I, Demirci G, El Fray M. Bio-Based Photoreversible Networks Containing Coumarin Groups for Future Medical Applications. Polymers (Basel) 2023; 15:polym15081885. [PMID: 37112032 PMCID: PMC10141156 DOI: 10.3390/polym15081885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Photocurable biomaterials that can be delivered as liquids and rapidly (within seconds) cured in situ using UV light are gaining increased interest in advanced medical applications. Nowadays, fabrication of biomaterials that contain organic photosensitive compounds have become popular due to their self-crosslinking and versatile abilities of changing shape or dissolving upon external stimuli. Special attention is paid to coumarin due to its excellent photo- and thermoreactivity upon UV light irradiation. Thus, by modifying the structure of coumarin to make it reactive with a bio-based fatty acid dimer derivative, we specifically designed a dynamic network that is sensitive to UV light and able to both crosslink and re-crosslink upon variable wave lengths. A simple condensation reaction was applied to obtain future biomaterial suitable for injection and photocrosslinking in situ upon UV light exposure and decrosslinking at the same external stimuli but at different wave lengths. Thus, we performed the modification of 7-hydroxycoumarin and condensation with fatty acid dimer derivatives towards a photoreversible bio-based network for future medical applications.
Collapse
Affiliation(s)
- Iskenderbek Elchiev
- Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science, West Pomeranian University of Technology, Al. Piastów 45, 71-311 Szczecin, Poland
| | - Gokhan Demirci
- Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science, West Pomeranian University of Technology, Al. Piastów 45, 71-311 Szczecin, Poland
| | - Miroslawa El Fray
- Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science, West Pomeranian University of Technology, Al. Piastów 45, 71-311 Szczecin, Poland
| |
Collapse
|
5
|
Lignin Nanoparticles for Enhancing Physicochemical and Antimicrobial Properties of Polybutylene Succinate/Thymol Composite Film for Active Packaging. Polymers (Basel) 2023; 15:polym15040989. [PMID: 36850272 PMCID: PMC9967065 DOI: 10.3390/polym15040989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The natural abundance, polymer stability, biodegradability, and natural antimicrobial properties of lignin open a wide range of potential applications aiming for sustainability. In this work, the effects of 1% (w/w) softwood kraft lignin nanoparticles (SLNPs) on the physicochemical properties of polybutylene succinate (PBS) composite films were investigated. Incorporation of SLNPs into neat PBS enhanced Td from 354.1 °C to 364.7 °C, determined through TGA, whereas Tg increased from -39.1 °C to -35.7 °C while no significant change was observed in Tm and crystallinity, analyzed through DSC. The tensile strength of neat PBS increased, to 35.6 MPa, when SLNPs were added to it. Oxygen and water vapor permeabilities of PBS with SLNPs decreased equating to enhanced barrier properties. The good interactions among SLNPs, thymol, and PBS matrix, and the high homogeneity of the resultant PBS composite films, were determined through FTIR and FE-SEM analyses. This work revealed that, among the PBS composite films tested, PBS + 1% SLNPs + 10% thymol showed the strongest microbial growth inhibition against Colletotrichum gloeosporioides and Lasiodiplodia theobromae, both in vitro, through a diffusion method assay, and in actual testing on active packaging of mango fruit (cultivar "Nam Dok Mai Si Thong"). SLNPs could be an attractive replacement for synthetic substances for enhancing polymer properties without compromising the biodegradability of the resultant material, and for providing antimicrobial functions for active packaging applications.
Collapse
|
6
|
Zhao Q, Gao S. Poly (Butylene Succinate)/Silicon Nitride Nanocomposite with Optimized Physicochemical Properties, Biocompatibility, Degradability, and Osteogenesis for Cranial Bone Repair. J Funct Biomater 2022; 13:jfb13040231. [PMID: 36412871 PMCID: PMC9680472 DOI: 10.3390/jfb13040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Congenital disease, tumors, infections, and trauma are the main reasons for cranial bone defects. Herein, poly (butylene succinate) (PB)/silicon nitride (Si3N4) nanocomposites (PSC) with Si3N4 content of 15 w% (PSC15) and 30 w% (PSC30) were fabricated for cranial bone repair. Compared with PB, the compressive strength, hydrophilicity, surface roughness, and protein absorption of nanocomposites were increased with the increase in Si3N4 content (from 15 w% to 30 w%). Furthermore, the cell adhesion, multiplication, and osteoblastic differentiation on PSC were significantly enhanced with the Si3N4 content increasing in vitro. PSC30 exhibited optimized physicochemical properties (compressive strength, surface roughness, hydrophilicity, and protein adsorption) and cytocompatibility. The m-CT and histological results displayed that the new bone formation for SPC30 obviously increased compared with PB, and PSC30 displayed proper degradability (75.3 w% at 12 weeks) and was gradually replaced by new bone tissue in vivo. The addition of Si3N4 into PB not only optimized the surface performances of PSC but also improved the degradability of PSC, which led to the release of Si ions and a weak alkaline environment that significantly promoted cell response and tissue regeneration. In short, the enhancements of cellular responses and bone regeneration of PSC30 were attributed to the synergism of the optimized surface performances and slow release of Si ion, and PSC30 were better than PB. Accordingly, PSC30, with good biocompatibility and degradability, displayed a promising and huge potential for cranial bone construction.
Collapse
|
7
|
K S S, Ravji Paghadar B, Kumar SP, R L J. Polybutylene Succinate, A potential bio-degradable polymer: Synthesis, copolymerization And Bio-degradation. Polym Chem 2022. [DOI: 10.1039/d2py00204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(butylene succinate) is one of the emerging bio-degradable polymer, which has huge potential to be employed in a wide range of applications. Further, it is also recognized as one of...
Collapse
|
8
|
Łopusiewicz Ł, Macieja S, Bartkowiak A, El Fray M. Antimicrobial, Antibiofilm, and Antioxidant Activity of Functional Poly(Butylene Succinate) Films Modified with Curcumin and Carvacrol. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7882. [PMID: 34947476 PMCID: PMC8704623 DOI: 10.3390/ma14247882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
The use of food industry waste as bioactive compounds in the modification of biodegradable films as food packaging remains a major challenge. This study describes the preparation and bioactivity characterization of poly(butylene succinate) (PBS)-based films with the addition of the bioactive compounds curcumin (CUR) and carvacrol (CAR). Films based on PBS modified with curcumin and carvacrol at different concentration variations (0%/0.1%/1%) were prepared by solvent casting method. The antioxidant, antimicrobial, and antibiofilm properties were investigated against bacteria (Escherichia coli, Staphylococcus aureus) and fungi (Candida albicans). As a result of the modification, the films exhibited free radicals scavenging (DPPH up to 91.47% and ABTS up to 99.21%), as well as antimicrobial (6 log, 4 log, and 2 log reductions for E. coli, S. aureus, and C. albicans, respectively, for samples modified with 1% CUR and 1% CAR) activity. Moreover, antibiofilm activity of modified materials was observed (8.22-87.91% reduction of biofilm, depending on bioactive compounds concentration). PBS films modified with curcumin and carvacrol with observed bifunctional properties have many potential applications as active packaging.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (A.B.)
| | - Szymon Macieja
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (A.B.)
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (S.M.); (A.B.)
| | - Mirosława El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 71-311 Szczecin, Poland;
| |
Collapse
|