1
|
Jing Y, Chi W, Zhang W, Qiu Y, Gao M, Yu L, Song L, Wang X, Liu Z, Gao J, Huang J, Li Y, Gao G, Gao Y, Wang Y, Wang N. An innovative functional compatibility strategy for poly (lactic acid) and polypropylene carbonate blends to achieve superior toughness, degradability, and optical properties. Int J Biol Macromol 2024; 280:135702. [PMID: 39304048 DOI: 10.1016/j.ijbiomac.2024.135702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study, for the first time, unveils the potential of dibutyl itaconate (DBI) in enhancing the compatibility between PLA (poly (lactic acid)) and PPC (polypropylene carbonate), systematically investigating the effects of DBI amount on the thermal, optical, rheological, mechanical, and degradation properties and microstructure of the PLA/PPC/DBI blends. The results showed that DBI could chemically react with PLA and PPC, forming a PLA-co-DBI-co-PPC copolymer structure, thereby improving the compatibility between PLA and PPC. When the DBI amount reached 8 wt%, only one Tg was observed in the blend system, and no distinct phase interface was visible in the fracture surface of the blend specimens. This indicated that at this DBI amount, the PLA and PPC had transitioned from a partially compatible system to a fully compatible system. With the increase in DBI amount in the system, the elongation at break and notched impact strength of the blends initially increased and then decreased, while the storage modulus, loss modulus, and complex viscosity showed a gradual downward trend. When the DBI amount increased to 10 wt%, the flexibility of the blends reached its peak, with the values rising to 494.7 % and 8494.1 J/m2, respectively, representing 13.7 times and 2.5 times those of the neat PLA/PPC blends. At this point, the impact specimens exhibited significant plastic flow in the direction of force, showing distinct ductile fracture characteristics. Meanwhile, the degradation performance of the PLA/PPC blends increased with the addition of DBI. The introduction of DBI effectively facilitated the penetration of water molecules into the PLA/PPC molecular chains, enhancing the hydrolysis of ester bonds, leading to a maximum mass loss rate of 84.1 %, which was significantly higher than the 20.3 % of the neat PLA/PPC blends. In addition, the addition of DBI significantly reduced the haze of the blends while maintaining high light transmittance, demonstrating excellent optical properties (light transmittance remained above 92.4 %, and haze decreased from 37.1 % to 11.1 %). In conclusion, this study provides a new approach for the development of high-performance PLA-based biodegradable composites. The resulting blends exhibit excellent toughness, degradation performance, and optical properties, significantly enhancing their application potential in fields such as disposable products, packaging, agriculture, and 3D printing materials.
Collapse
Affiliation(s)
- Ying Jing
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Weihan Chi
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wei Zhang
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China
| | - Ying Qiu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Meng Gao
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China
| | - Lingxiao Yu
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Lixin Song
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Xiangyi Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhe Liu
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jialu Gao
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiangting Huang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongchao Li
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Guangxu Gao
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yujuan Gao
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanxia Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
| | - Na Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
| |
Collapse
|
2
|
Tosakul T, Chanthot P, Pattamaprom C. High toughness and fast home-compost biodegradable packaging films derived from polylactic acid/thermoplastic starch/para-rubber ternary blends. Sci Rep 2024; 14:18603. [PMID: 39127810 PMCID: PMC11316775 DOI: 10.1038/s41598-024-69508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
This research aims to formulate biobased and biodegradable packaging films with high toughness and fast home-compost biodegradation using ternary blends of polylactic acid (PLA), Para rubber (NR), and thermoplastic starch (TPS) through blown-film extrusion. The TPS content in this work ranges from 5 to 20 wt%, while the PLA: NR ratio is fixed at 70:30. At this PLA: NR ratio, the blend with 10 wt% TPS (PNT10) exhibited the highest % elongation at break and tensile toughness. Peroxide radical initiator was investigated as a potential additive for improving the properties of the ternary blend. Our binary interaction study indicated that peroxide initiated grafting reactions of PLA-NR and NR-TPS pairs, while no grafting occurred between PLA and TPS. In ternary blends, the highest peroxide content (0.5 wt%) increased the % elongation at break up to 120%, with the tensile toughness reaching 7255 MJ/m3. The improved compatibility induced by peroxide addition was supported by enhanced dispersion of TPS in the PLA/NR matrices. Results from the room-temperature soil burial test indicated that the presence of TPS could significantly accelerate the home-compost degradation of PNT films compared to films produced from neat PLA and PLA/NR. This suggests its potential as both a cost reducer and a biodegradation accelerator.
Collapse
Affiliation(s)
- Tuchathum Tosakul
- Research Unit in Polymer Rheology and Processing, Department of Chemical Engineering, Thammasat School of Engineering, Faculty of Engineering, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Peerapong Chanthot
- Research Unit in Polymer Rheology and Processing, Department of Chemical Engineering, Thammasat School of Engineering, Faculty of Engineering, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Cattaleeya Pattamaprom
- Research Unit in Polymer Rheology and Processing, Department of Chemical Engineering, Thammasat School of Engineering, Faculty of Engineering, Thammasat University, Klong Luang, Pathumthani, Thailand.
| |
Collapse
|
3
|
Song L, Chi W, Hao Y, Ren J, Yang B, Cong F, Li Y, Yu L, Li X, Wang Y. Improving the properties of polylactic acid/polypropylene carbonate blends through cardanol-induced compatibility enhancement. Int J Biol Macromol 2024; 258:128886. [PMID: 38141698 DOI: 10.1016/j.ijbiomac.2023.128886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Cardanol (CD) is used as a reactive compatibilizer, and blended with polylactic acid (PLA) and polypropylene carbonate (PPC) resin (70/30(w/w)) to obtain a series of PLA/PPC/CD blends. The systematic study was conducted on the thermal properties, optical properties, rheological properties, mechanical properties, and microscopic morphology of the blend, by varying amounts of CD added to the blends. A detailed explanation and comprehensive analysis of the reaction mechanism between CD and PLA/PPC have been made. The study found that CD acts as a "bridge" between the PLA and PPC, forming the structure of a block copolymer (PLA-b-CD-b-PPC), and the copolymer can greatly improve the compatibility of PLA and PPC. When the amount of CD reaches 8 wt%, only one Tg is observed in the blend, simultaneously, PLA/PPC has already transitioned from a partially compatible system to a completely compatible system. At the same time, the addition of CD does not have any negative impact on the thermal stability of the PLA/PPC blend under processing temperature conditions, and the thermal stability of the PLA/PPC/CD blends can even be improved under extreme conditions. In addition, the addition of CD allows the PLA/PPC/CD blends to maintain a high light transmittance while reducing the opacity of the blend (the light transmittance remains above 92 %, and the opacity is reduced from 37 % to about 24 %), demonstrating excellent optical properties. Moreover, the elongation at break and impact strength of the PLA/PPC/CD blend both show a trend of first increasing and then decreasing with the increase of CD amount. When the CD amount varies within the range of 6- 8 wt%, the blends undergoes a brittle-ductile transition, and its toughness is greatly improved while the rigidity can also meet practical needs. When the amount of CD in the system increases to 12 wt%, the toughness of the blend reaches its peak, and its elongation at break and impact strength reach 513.24 % and 9211.5 J/m2 respectively (increased to 2442.84 % and 270.73 % of the PLA/PPC blend). Concurrently, the fracture surface of the blend exhibits large-scale plastic flow in the direction of the applied force, with marked shear yield phenomena, showing obvious characteristics of tough fracture.
Collapse
Affiliation(s)
- Lixin Song
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Weihan Chi
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongsheng Hao
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiannan Ren
- AVIC Shenyang Aircraft Corporation, Shenyang 110850, China
| | - Bing Yang
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fei Cong
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongchao Li
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Lingxiao Yu
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xianliang Li
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanxia Wang
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
| |
Collapse
|
4
|
Sanaka R, Sahu SK. Experimental investigation into mechanical, thermal, and shape memory behavior of thermoresponsive PU/MXene shape memory polymer nanocomposite. Heliyon 2024; 10:e24014. [PMID: 38293526 PMCID: PMC10825426 DOI: 10.1016/j.heliyon.2024.e24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
This research presents an experimental investigation into the mechanical, thermal, and shape memory behavior of a thermos-responsive polyurethane (PU) reinforced with 0-1.0 wt % of MXene (Ti3C2Tx) nanofiller. The PU/MXene nanocomposites were fabricated using sonication and injection molding route. The 0.5 wt % PU/MXene nanocomposite showed the optimum mechanical properties i.e. tensile modulus, tensile strength, and hardness value, which are improved by 22, 281, and 19 %, respectively, compared to pure PU. The improvement is observed in melting temperature (Tm), the heat of melting (hm), crystallization temperature (Tc), and the heat of crystallization (hc) results. The percentage of crystallinity revealed enhancements of 6 %, 18 %, 24 %, and 34 % for 0.1, 0.2, 0.3, and 0.5 wt % PU/MXene samples respectively compared to pure PU. The findings from the shape recovery experiments demonstrated that the inclusion of MXene has no impact on both the shape fixity and shape recovery performance. The PU/MXene nanocomposite with improved mechanical and thermal properties can find potential applications in robotics actuators, medical devices, sensors, etc.
Collapse
Affiliation(s)
- Rajita Sanaka
- School of Mechanical Engineering, VIT-AP University, Besides A.P. Secretariat, Amaravati 522237, Andhra Pradesh, India
| | - Santosh Kumar Sahu
- School of Mechanical Engineering, VIT-AP University, Besides A.P. Secretariat, Amaravati 522237, Andhra Pradesh, India
| |
Collapse
|
5
|
Brown M, Badzinski TD, Pardoe E, Ehlebracht M, Maurer-Jones MA. UV Light Degradation of Polylactic Acid Kickstarts Enzymatic Hydrolysis. ACS MATERIALS AU 2024; 4:92-98. [PMID: 38221918 PMCID: PMC10786133 DOI: 10.1021/acsmaterialsau.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 01/16/2024]
Abstract
Polylactic acid (PLA) and bioplastics alike have a designed degradability to avoid the environmental buildup that petroplastics have created. Yet, this designed biotic-degradation has typically been characterized in ideal conditions. This study seeks to relate the abiotic to the biotic degradation of PLA to accurately represent the degradation pathways bioplastics will encounter, supposing their improper disposal in the environment. Enzymatic hydrolysis was used to study the biodegradation of PLA with varying stages of photoaging. Utilizing a fluorescent tag to follow enzyme hydrolysis, it was determined that increasing the amount of irradiation yielded greater amounts of total enzymatic hydrolysis by proteinase K after 8 h of enzyme incubation. While photoaging of the polymers causes minimal changes in chemistry and increasing amounts of crystallinity, the trends in biotic degradation appear to primarily be driven by photoinduced reduction in molecular weight. The relationship between photoaging and enzyme hydrolysis appears to be independent of enzyme type, though commercial product degradation may be impacted by the presence of additives. Overall, this work reveals the importance of characterizing biodegradation with relevant samples that ultimately can inform optimization of production and disposal.
Collapse
Affiliation(s)
- Margaret
H. Brown
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1038 University Dr, Duluth, Minnesota 55812, United States
| | - Thomas D. Badzinski
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1038 University Dr, Duluth, Minnesota 55812, United States
| | - Elizabeth Pardoe
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1038 University Dr, Duluth, Minnesota 55812, United States
| | - Molly Ehlebracht
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1038 University Dr, Duluth, Minnesota 55812, United States
| | - Melissa A. Maurer-Jones
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1038 University Dr, Duluth, Minnesota 55812, United States
| |
Collapse
|
6
|
Song L, Chi W, Zhang Q, Ren J, Yang B, Cong F, Li Y, Wang W, Li X, Wang Y. Improvement of properties of polylactic acid/polypropylene carbonate blends using epoxy soybean oil as an efficient compatibilizer. Int J Biol Macromol 2023; 253:127407. [PMID: 37832613 DOI: 10.1016/j.ijbiomac.2023.127407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Epoxidized soybean oil (ESO) was used as a compatibilizer and blended with polylactic acid (PLA) and polypropylene carbonate (PPC) resin to prepare a series of PLA/PPC/ESO blends with varying compositions. The influence of the variation in the amount of ESO added to the blend system on the thermal properties, optical properties, rheological properties, mechanical properties, and microscopic morphology of the blends was studied. The research indicates that ESO can react with PLA and PPC to form a chemical bond interface, which improves the compatibility of PLA and PPC to a certain extent. With the increase in the amount of ESO added to the blend (1- 5 phr), the complete decomposition temperature, storage modulus, loss modulus, complex viscosity, notched impact strength, and elongation at break of the blend all show a trend of continuous increase. At the same time, the melt flow rate, light transmittance, and tensile strength of the blend do not show significant fluctuations. When the amount of ESO in the system is 5 phr, compared with the PLA/PPC blend, the notched impact strength and elongation at break of the PLA/PPC/ESO blend increase from 4270.3 J/m2, 43.89 % to 8560.4 J/m2, 211.28 %, respectively, and its tensile strength and transmittance still remain around 63 MPa, 92 %. This improves the toughness of the blend while maintaining its rigidity, demonstrating excellent mechanical and optical properties. At this time, the microscopic morphology of the fracture surface of the impact sample also shows obvious characteristics of tough fracture. However, when the amount of ESO added to the blend is excessive (6 phr), the compatibility of the blending system decreases, which will degrade the performance of the blending material and ultimately destroy the phase morphology of the blend and reduce its mechanical properties.
Collapse
Affiliation(s)
- Lixin Song
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Weihan Chi
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Qian Zhang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiannan Ren
- AVIC Shenyang Aircraft Corporation, Shenyang 110850, China
| | - Bing Yang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fei Cong
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongchao Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wei Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xianliang Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanxia Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
7
|
Esteki B, Masoomi M, Asadinezhad A. Tailored Morphology in Polystyrene/Poly(lactic acid) Blend Particles: Solvent's Effect on Controlled Janus/Core-Shell Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15306-15318. [PMID: 37864780 DOI: 10.1021/acs.langmuir.3c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Controlling the morphology of polymeric particles is vital for their diverse applications. In this study, we explored how solvent composition influences the morphology of poly(styrene)/poly(lactic acid) (PS/PLA) particles prepared via the emulsion solvent evaporation method. We used toluene, dichloromethane (DCM), and various mixtures to prepare these particles. We investigated phase separation within the PS/PLA/solvent system using the Flory-Huggins ternary phase diagram and MesoDyn simulation, revealing pronounced immiscibility and phase separation in both PS/PLA/DCM and PS/PLA/toluene systems. We employed scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to characterize the resulting morphologies. Our study unveiled the substantial impact of solvent composition on particle structure. Using pure toluene resulted in acorn-shaped Janus particles. However, incorporating DCM into the solvent induced a transition from Janus to core-shell morphology. Remarkably, core-shell particles exhibited a single-core structure in a mixed toluene/DCM solvent, indicating thermodynamic stability. In contrast, pure DCM favored kinetically controlled multicore morphology, leading to lower PLA crystallinity due to increased PS-PLA interfaces. Samples with high Janus balance formed a self-assembled, two-dimensional (2-D) monolayer film, demonstrating the interfacial activity of the Janus particles. This 2-D monolayer film exhibits desirable emulsification properties with potential applications in various fields. Our study combines theoretical and experimental analyses, shedding light on the profound impact of solvent composition on the PS/PLA particle morphology. We observed transitions from Janus to core-shell structures, highlighted the influence of solvent viscosity on particle size, and uncovered the formation of self-assembled 2-D monolayer films. These insights are pivotal for tailoring polymeric particle structures. Furthermore, our findings advance macromolecular science in interface design, offering promising prospects for innovative materials development.
Collapse
Affiliation(s)
- Bahareh Esteki
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahmood Masoomi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ahmad Asadinezhad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
8
|
Leonés A, Peponi L, García-Martínez JM, Collar EP. Study on the Tensile Behavior of Woven Non-Woven PLA/OLA/MgO Electrospun Fibers. Polymers (Basel) 2023; 15:3973. [PMID: 37836022 PMCID: PMC10574995 DOI: 10.3390/polym15193973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The present work deeply studied the mechanical behavior of woven non-woven PLA/OLA/MgO electrospun fibers, efibers, by using Box-Wilson surface response methodology. This work follows up a previous one where both the diameters and the thermal response of such efibers were discussed in terms of both the different amounts of magnesium oxide nanoparticles, MgO, as well as of the oligomer (lactic acid), OLA, used as plasticizer. The results of both works, in term of diameters, degree of crystallinity, and mechanical response, can be strongly correlated to each other, as reported here. In particular, the strain mechanism of PLA/OLA/MgO efibers was studied, showing an orientation of efibers parallel to the applied stress and identifying the mechanically weakest points that yielded the start of the breakage of efibers. Moreover, we identified 1.5 wt% as the critical amount of MgO, above which the plasticizing effect of OLA was weaker as the amount of both components increased. Moreover, the minimum elastic modulus value took place at 15 wt% of OLA, in agreement with the previously reported convergence point in the evolution of the degree of crystallinity. Regarding the yield point, a concentration of OLA between 20 and 30 wt% led to a slight improvement in the yielding capability in terms of tensile strength in comparison with neat PLA efibers. Therefore, the approach presented here permits the design of tailor-made electrospun nanocomposites with specific mechanical requirements.
Collapse
Affiliation(s)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
| | | | | |
Collapse
|
9
|
Hazarika D, Chakraborty G, Kumar A, Katiyar V. Role of silk nanocrystal (SNC)-ZnO as an antibacterial nucleating nanohybrid for a patterned mimic poly(lactic acid) based nanofabric. Int J Biol Macromol 2023; 242:125126. [PMID: 37257545 DOI: 10.1016/j.ijbiomac.2023.125126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
This new investigation deals with the synthesis of an organic-inorganic nanohybrid using SNC with magnificent flower bud-shaped ZnO, termed SNC-ZnO by precipitation method. The nanohybrid (with concentrations 1 wt%, 3 wt%, and 5 wt%) was in situ incorporated into the PLA matrix to prepare the electrospun solution. The functionalized PLA composite nanofibres produced by electrospinning with SNC-ZnO nanohybrid were systematically studied using different structural and morphological analyses to meet the challenging processing requirements. The FESEM analysis gives an average diameter of nanofibres 246 ± 10.2 nm where nanohybrid tends to adhere on the surface of the PLA nanofabric increasing hydrophobicity up to water contact angle 135.3 ± 0.25 °C with 5 wt% nanohybrid incorporation. The nanofabric has significant antibacterial activity against E.Coli and S.Aureus bacteria. Further, an extensive study has been made on thermally stipulated processes using DSC on non-isothermal crystallization kinetics using different models: Avrami, Ozawa, Mo, and Tobin. The results revealed sites for heterogeneous nucleation and improvement in crystallinity, t1/2, and nucleation effects due to the incorporation of crystalline nanohybrid in PLA nanofibres. Further, the Avrami plot has confirmed both primary and secondary crystallization processes thereby considering its potential to utilize functionalized PLA nanofabric for applications in protective textile.
Collapse
Affiliation(s)
- Doli Hazarika
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gourhari Chakraborty
- Chemical Engineering Department, NIT Andhra Pradesh, Andhra Pradesh 534101, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
10
|
Choo JE, Park TH, Jeon SM, Hwang SW. The Effect of Epoxidized Soybean Oil on the Physical and Mechanical Properties of PLA/PBAT/PPC Blends by the Reactive Compatibilization. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:1-15. [PMID: 37361351 PMCID: PMC10124934 DOI: 10.1007/s10924-023-02862-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT)/poly (propylene carbonate) (PPC) multi-phase blends were prepared by melt processing technique under the presence of compatibilizer with various composition. The effect on the physical and the mechanical property with/without ESO was characterized with spectrophotometric analysis, mechanical properties, thermal properties, rheological properties and barrier properties, and the structure-properties relationship was assessed. The functional groups of PPC were found to effective to improve an interaction with carboxyl/hydroxyl group of PLA/PBAT binary blends to enhance the mechanical and physical properties on multi-phase blend system. The presence of PPC in PLA/PBAT blend affected the reduction of voids on the interface phase resulting in enhancing the oxygen barrier properties. With addition of ESO, the compatibility of ternary blend was found to be enhanced since the epoxy group of ESO reacted with the carboxyl/hydroxyl group of PLA, PBAT, and PPC, and under the condition with critical content of 4 phr of ESO, the elongation behavior dramatically increased as compared to that of blends without ESO while affecting reduction of oxygen barrier properties. The effect of ESO as a compatibilizer was clearly observed from the overall performances of ternary blends, and the potential feasibility of the PLA/PBAT/PPC ternary blends as packaging materials was confirmed at this study.
Collapse
Affiliation(s)
- Ji Eun Choo
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea
| | - Tae Hyeong Park
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea
| | - Seon Mi Jeon
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea
| | - Sung Wook Hwang
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea
| |
Collapse
|
11
|
Cai K, Lin Y, Ma Y, Yang Z, Yu L, Zhang J, Xu D, Zeng R, Gao W. Determination of Residual Diisocyanates and Related Diamines in Biodegradable Mulch Films Using N-Ethoxycarbonylation Derivatization and GC-MS. Molecules 2022; 27:molecules27196754. [PMID: 36235287 PMCID: PMC9572079 DOI: 10.3390/molecules27196754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Diisocyanates are highly reactive compounds with two functional isocyanate groups. The exposure of diisocyanates is associated with severely adverse health effects, such as asthma, inflammation in the respiratory tract, and cancer. The hydrolysis product from diisocyanates to related diamines is also a potential carcinogen. Here, we developed an effective, accurate, and precise method for simultaneous determination of residual diisocyanates and related diamines in biodegradable mulch films, based on N-ethoxycarbonylation derivatization and gas chromatography-mass spectrometry. The method development included the optimization of ultrasonic hydrolysis and extraction, screening of N-ethoxycarbonylation conditions with ethyl chloroformate, evaluation of the diamines degradation, and analysis of the fragmentation mechanisms. Under the optimum experimental conditions, good linearity was observed with R2 > 0.999. The extraction recoveries were found in the range of 93.9−101.2% with repeatabilities and reproducibilities in 0.89−8.12% and 2.12−10.56%, respectively. The limits of detection ranged from 0.0025 to 0.057 µg/mL. The developed method was applied to commercial polybutylene adipate co-terephthalate (PBAT) biodegradable mulch film samples for analysis of the diverse residual diisocyanates and related diamine additives. The components varied greatly among the sample from different origin. Overall, this study provides a reliable method for assessing safety in biodegradable mulch films.
Collapse
Affiliation(s)
- Kai Cai
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Yechun Lin
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Yunfei Ma
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Zhixiao Yang
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Lei Yu
- Key Laboratory for Degradation Technologies of Pesticide Residues with Superior Agricultural Products in Guizhou Ecological Environment, Guiyang University, Guiyang 550005, China
| | - Jie Zhang
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Dongqing Xu
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
| | - Rong Zeng
- School of Geography Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guiyang 550081, China
- Correspondence: ; Tel.: +86-0851-84116908
| |
Collapse
|
12
|
Effect of Different Comonomers Added to Graft Copolymers on the Properties of PLA/PPC/PLA-g-GMA Blends. Polymers (Basel) 2022; 14:polym14194088. [PMID: 36236042 PMCID: PMC9573763 DOI: 10.3390/polym14194088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
The melt-free radical grafting of glycidyl methacrylate (GMA) onto poly (lactic acid) (PLA) with styrene (St), α-methylstyrene (AMS), and epoxy resin (EP) as comonomers in a twin-screw extruder was used to prepare PLA-g-GMA graft copolymers. The prepared graft copolymers were then used as compatibilizers to prepare PLA/PPC/PLA-g-GMA blends by melt blending with PLA and polypropylene carbonate (PPC), respectively. The effects of different comonomers in the PLA-g-GMA graft copolymers on the thermal, rheological, optical, and mechanical properties and microstructure of the blends were studied. It was found that the grafting degree of PLA-g-GMA graft copolymers was increased to varying degrees after the introduction of comonomers in the PLA-g-GMA grafting reaction system. When St was used as the comonomer, the grafting degree of the PLA-g-GMA graft copolymer increased most significantly, from 0.8 to 1.6 phr. St as a comonomer also most improved the compatibility between PLA and PPC, and the haze of the blends was reduced while maintaining high transmittance. In addition, the PLA-g-GMA graft copolymer with the introduction of St as a comonomer significantly improved the impact toughness of the blends, while the thermal stability and tensile strength of the blends remained largely unchanged.
Collapse
|
13
|
Intra- and Intermolecular Hydrogen Bonding in Miscible Blends of CO2/Epoxy Cyclohexene Copolymer with Poly(Vinyl Phenol). Int J Mol Sci 2022; 23:ijms23137018. [PMID: 35806022 PMCID: PMC9266814 DOI: 10.3390/ijms23137018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, we synthesized a poly(cyclohexene carbonate) (PCHC) through alternative ring-opening copolymerization of CO2 with cyclohexene oxide (CHO) mediated by a binary LZn2OAc2 catalyst at a mild temperature. A two-dimensional Fourier transform infrared (2D FTIR) spectroscopy indicated that strong intramolecular [C–H···O=C] hydrogen bonding (H-bonding) occurred in the PCHC copolymer, thereby weakening its intermolecular interactions and making it difficult to form miscible blends with other polymers. Nevertheless, blends of PCHC with poly(vinyl phenol) (PVPh), a strong hydrogen bond donor, were miscible because intermolecular H-bonding formed between the PCHC C=O units and the PVPh OH units, as evidenced through solid state NMR and one-dimensional and 2D FTIR spectroscopic analyses. Because the intermolecular H-bonding in the PCHC/PVPh binary blends were relatively weak, a negative deviation from linearity occurred in the glass transition temperatures (Tg). We measured a single proton spin-lattice relaxation time from solid state NMR spectra recorded in the rotating frame [T1ρ(H)], indicating full miscibility on the order of 2–3 nm; nevertheless, the relaxation time exhibited a positive deviation from linearity, indicating that the hydrogen bonding interactions were weak, and that the flexibility of the main chain was possibly responsible for the negative deviation in the values of Tg.
Collapse
|