1
|
Conde A, Borges S, Baptista-Silva S, Veloso T, Pereira JL, Ventura SPM, Pintado MME. A crayfish chitosan-based bioactive film to treat vaginal infections: A sustainable approach. Int J Biol Macromol 2024; 277:134460. [PMID: 39102915 DOI: 10.1016/j.ijbiomac.2024.134460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Polymicrobial communities are seen to be a sign of health, but they can turn detrimental when an excess of pathogenic species leads to recurring vaginal infections. This microbiological imbalance may decrease women's fertility, increasing also the risk of infection by Human Papillomavirus (HPV) and/or other sexually transmitted infections (STIs). There is a worldwide need for smart/sustainable solutions to tackle these types of infections. Hereupon, we investigated, as a potential solution, the use of crayfish chitosan-based membrane as a mucoadhesive, antimicrobial, biocompatible and biodegradable material. Chitosan was chemically extracted with a process yield of ca. 63 % and a degree of deacetylation of ca. 65 %. Further chitosan was characterized by FTIR, DSC, XRD and zeta potential. Antimicrobial and antioxidant activities were tested by microbicide concentration and ABTS methods. The extracted chitosan was confirmed to be antioxidant and antimicrobial against Escherichia coli, Candida albicans, Staphylococcus aureus (methicillin resistant and susceptible strains). Vaginal films using chitosan extracted from crayfish shells were produced by solvent casting, and the biological profile was tested in simulated vaginal fluid as a proof of concept. The main data showed that the vaginal films prepared were active against several microorganisms responsible for vaginal infections, demonstrating their potential in the field.
Collapse
Affiliation(s)
- Alexandra Conde
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sandra Borges
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Sara Baptista-Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Telma Veloso
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Joana L Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Manuela M E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
2
|
de la Rosa O, Aguayo-Acosta A, Valenzuela-Amaro HM, Meléndez-Sánchez ER, Sosa-Hernández JE, Parra-Saldívar R. Development of biomaterial composite hydrogel as a passive sampler with potential application in wastewater-based surveillance. Heliyon 2024; 10:e37014. [PMID: 39296035 PMCID: PMC11407980 DOI: 10.1016/j.heliyon.2024.e37014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Nowadays, the need to track fast-spreading infectious diseases has raised due to the recent COVID-19 disease pandemic. As a response, Wastewater-based Surveillance (WBS) has emerged as an early detection and disease tracking method for large populations that enables a comprehensive overview of public health allowing for a faster response from public health sector to prevent large outbreaks. The process to achieve WBS requires a highly intensive sampling strategy with either expensive equipment or trained personnel to continuously sample. The sampling problem can be addressed by passive sampler development. Chitosan-based hydrogels are recognized for their capability to sample and remove various contaminants from wastewater, including metals, dyes, pharmaceuticals, among others. However, chitosan-based hydrogels unique characteristics, can be exploited to develop passive samplers of genetic material that can be a very valuable tool for WBS. This study aimed to develop a novel chitosan hydrogel formulation with enhanced characteristics suitable for use as a passive sampler of genetic material and its application to detect disease-causing pathogens present in wastewater. The study evaluates the effect of the concentration of different components on the formulation of a Chitosan composite hydrogel (Chitosan, Glutaraldehyde, Microcrystalline cellulose (MCC), and Polyethylene glycol (PEG)) on the hydrogel properties using a Box Hunter & Hunter experimental matrix. Hydrogels' weight, thickness, swelling ratio, microscopic morphology (SEM), FTIR assay, and zeta potential were characterized. The resulting hydrogel formulations were shown to be highly porous, positively charged (Zeta potential up to 35.80 ± 1.44 mV at pH 3) and with high water swelling capacity (up to 703.89 ± 15.00 %). Based on the results, a formulation from experimental design was selected and then evaluated its capacity to adsorb genetic material from a control spiked water with Influenza A virus synthetic vector. The adsorption capacity of the selected formulation was 4157.04 ± 64.74 Gene Copies/mL of Influenza A virus synthetic vector. The developed hydrogel showed potential to be used as passive sampler for pathogen detection in wastewater. However, deeper research can be conducted to improve adsorption, desorption and extraction techniques of genetic material from chitosan-hydrogel matrices.
Collapse
Affiliation(s)
- Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Hiram Martín Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| |
Collapse
|
3
|
Jimenez-Champi D, Romero-Orejon FL, Muñoz AM, Ramos-Escudero F. The Revalorization of Fishery By-Products: Types, Bioactive Compounds, and Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6624083. [PMID: 39105167 PMCID: PMC11300074 DOI: 10.1155/2024/6624083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.
Collapse
Affiliation(s)
- Diana Jimenez-Champi
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Frank L. Romero-Orejon
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Ana María Muñoz
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Food Science and Nutrition InstituteUniversidad San Ignacio de Loyola (ICAN-USIL), Lima, Peru
| | - Fernando Ramos-Escudero
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Health Sciences FacultyUniversidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
4
|
Antonov YA, Kulikov SN, Bezrodnykh EA, Zhuravleva IL, Berezin BB, Tikhonov VE. An insight into the effect of interaction with protein on antibacterial activity of chitosan derivatives. Int J Biol Macromol 2024; 259:129050. [PMID: 38158056 DOI: 10.1016/j.ijbiomac.2023.129050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Antimicrobial activity of chitosan in protein-rich media is of a particular interest for various protein-based drug delivery and other systems. For the first time, bacteriostatic activity of chitosan derivatives in the presence of caseinate sodium (CAS) was studied and discussed. Complexation of chitosan derivatives soluble in acidic (CH and RCH) or alkalescent (RCH) media with CAS was confirmed by fluorescent spectroscopy, turbodimetry, light scattering data and measurement of electrical potentials of CAS/chitosan derivative complexes. An addition of CH and RCH caused a static quenching of CAS. Binding constants Kb determined for CH/CAS and RCH/CAS complexes at pH 6.0 were equal to 29.8 × 106 M-1 and 8.9 × 106 M-1, respectively. Kb value of RCH/CAS complex at pH 7.4 was equal to 1.1 × 105'M-1. The poisoned food method was used for counting the number and the direct measurement of the size of bacterial colonies on the surfaces of turbid agar media containing CAS/chitosan derivative complexex. Complete suppression of E. coli cells growth and restriction of S. aureus cells growth were observed on the surface of acidic media. A high concentration of CAS reduced the activity. The activity of RCH in alkalescent media is low or absent. These results can be promising for preparation of microbiologically stable protein-based drug delivery systems.
Collapse
Affiliation(s)
- Yurij A Antonov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N Kulikov
- Kazan Scientific Research Institute of Epidemiology and Microbiology, Kazan, Russia; Kazan Federal University, Kazan, Russia
| | - Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Irina L Zhuravleva
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Boris B Berezin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
5
|
Joshua Ashaolu T, Le TD, Suttikhana I. Stability and bioactivity of peptides in food matrices based on processing conditions. Food Res Int 2023; 168:112786. [PMID: 37120233 DOI: 10.1016/j.foodres.2023.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Bioactive peptides (BPs) generated from food proteins can serve therapeutic purposes against degenerative and cardiovascular diseases such as inflammation, diabetes, and cancer. There are numerous reports on the in vitro, animal, and human studies of BPs, but not as much information on the stability and bioactivity of these peptides when incorporated in food matrices. The effects of heat and non-heat processing of the food products, and storage on the bioactivity of the BPs, are also lacking. To this end, we describe the production of BPs in this review, followed by the food processing conditions that affect their storage bioactivity in the food matrices. As this area of research is open for industrial innovation, we conclude that novel analytical methods targeting the interactions of BPs with other components in food matrices would be greatly significant while elucidating their overall bioactivity before, during and after processing.
Collapse
|
6
|
Okeke ES, Chukwudozie KI, Nyaruaba R, Ita RE, Oladipo A, Ejeromedoghene O, Atakpa EO, Agu CV, Okoye CO. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69241-69274. [PMID: 35969340 PMCID: PMC9376131 DOI: 10.1007/s11356-022-22319-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 05/13/2023]
Abstract
Aquaculture has emerged as one of the world's fastest-growing food industries in recent years, helping food security and boosting global economic status. The indiscriminate disposal of untreated or improperly managed waste and effluents from different sources including production plants, food processing sectors, and healthcare sectors release various contaminants such as bioactive compounds and unmetabolized antibiotics, and antibiotic-resistant organisms into the environment. These emerging contaminants (ECs), especially antibiotics, have the potential to pollute the environment, particularly the aquatic ecosystem due to their widespread use in aquaculture, leading to various toxicological effects on aquatic organisms as well as long-term persistence in the environment. However, various forms of nanotechnology-based technologies are now being explored to assist other remediation technologies to boost productivity, efficiency, and sustainability. In this review, we critically highlighted several ecofriendly nanotechnological methods including nanodrug and vaccine delivery, nanoformulations, and nanosensor for their antimicrobial effects in aquaculture and aquatic organisms, potential public health risks associated with nanoparticles, and their mitigation measures for sustainable management.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
| | - Kingsley Ikechukwu Chukwudozie
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
- Department of Clinical Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Raphael Nyaruaba
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, China
| | - Richard Ekeng Ita
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria
| | - Abiodun Oladipo
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Onome Ejeromedoghene
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, People's Republic of China
| | - Edidiong Okokon Atakpa
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
- Department of Animal & Environmental Biology, University of Uyo, Uyo, 1017, Akwa Ibom State, Nigeria
| | | | - Charles Obinwanne Okoye
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya.
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria.
- School of Environment & Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China.
- Key Laboratory of Intelligent Agricultural Machinery Equipment, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Evaluation of Physically and/or Chemically Modified Chitosan Hydrogels for Proficient Release of Insoluble Nystatin in Simulated Fluids. Gels 2022; 8:gels8080495. [PMID: 36005096 PMCID: PMC9407202 DOI: 10.3390/gels8080495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
To avoid fungal spreading in the bloodstream and internal organs, many research efforts concentrate on finding appropriate candidiasis treatment from the initial stage. This paper proposes chitosan-based physically or chemically cross-linked hydrogels aimed to provide sustained release of micronized nystatin (NYSm) antifungal drug, known for its large activity spectrum. Nystatin was demonstrated itself to provide hydrodynamic/mechanic stability to the chitosan hydrogel through hydrophobic interactions and H-bonds. For chemical cross-linking of the succinylated chitosan, a non-toxic diepoxy-functionalized siloxane compound was used. The chemical structure and composition of the hydrogels, also their morphology, were evidenced by infrared spectroscopy (FTIR), by energy dispersive X-ray (EDX) analysis and by scanning electron microscopy (SEM), respectively. The hydrogels presented mechanical properties which mimic those of the soft tissues (elastic moduli < 1 MPa), necessary to ensure matrix accommodation and bioadhesion. Maximum swelling capacities were reached by the hydrogels with higher succinic anhydride content at both pH 7.4 (429%) and pH 4.2 (471%), while higher amounts of nystatin released in the simulative immersion media (57% in acidic pH and 51% in pH 7.4) occurred from the physical cross-linked hydrogel. The release mechanism by non-swellable matrix diffusion and the susceptibility of three Candida strains make all the hydrogel formulations effective for NYSm local delivery and for combating fungal infections.
Collapse
|
8
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Cytotoxicity Enhancement in MCF-7 Breast Cancer Cells with Depolymerized Chitosan Delivery of α-Mangostin. Polymers (Basel) 2022; 14:polym14153139. [PMID: 35956654 PMCID: PMC9371181 DOI: 10.3390/polym14153139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The application of α-mangostin (AMG) in breast cancer research has wide intentions. Chitosan-based nanoparticles (CSNPs) have attractive prospects for developing anticancer drugs, especially in their high flexibility for modification to enhance their anticancer action. This research aimed to study the impact of depolymerized chitosan (CS) on the cytotoxicity enhancement of AMG in MCF-7 breast cancer cells. CSNPs effectivity depends on size, shape, crystallinity degree, and charge surface. Modifying CS molecular weight (MW) is expected to influence CSNPs’ characteristics, impacting size, shape, crystallinity degree, and charge surface. CSNPs are developed using the method of ionic gelation with sodium tripolyphosphate (TPP) as a crosslinker and spray pyrolysis procedure. Nanoparticles’ (NPs) sizes vary from 205.3 ± 81 nm to 450.9 ± 235 nm, ZP charges range from +10.56 mV to +51.56 mV, and entrapment efficiency from 85.35% to 90.45%. The morphology of NPs are all the same spherical forms. In vitro release studies confirmed that AMG–Chitosan–High Molecular Weight (AMG–CS–HMW) and AMG–Chitosan–Low Molecular Weight (AMG–CS–LMW) had a sustained-release system profile. MW has a great influence on surface, drug release, and cytotoxicity enhancement of AMG in CSNPs to MCF-7 cancer cells. The preparations AMG–CS–HMW and AMG–CS–LMW NPs considerably enhanced the cytotoxicity of MCF-7 cells with IC50 values of 5.90 ± 0.08 µg/mL and 4.90 ± 0.16 µg/mL, respectively, as compared with the non-nano particle formulation with an IC50 of 8.47 ± 0.29 µg/mL. These findings suggest that CSNPs can enhance the physicochemical characteristics and cytotoxicity of AMG in breast cancer treatment.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
9
|
Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation. Int J Food Microbiol 2022; 379:109833. [PMID: 35914405 DOI: 10.1016/j.ijfoodmicro.2022.109833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
In recent years, cutting-edge nanotechnology research has revolutionized several facets of the food business, including food processing, packaging, transportation, preservation, and functioning. Nanotechnology has beginning to loom large in the food business as the industry's demand for biogenic nanomaterial grows. The intracellular and extracellular synthesis of metal, metal oxide, and other essential NPs has recently been explored in a variety of microorganisms, including bacteria, actinomycetes, fungi, yeasts, microalgae, and viruses. These microbes produce a variety extracellular material, exopolysaccharides, enzymes, and secondary metabolites which play key roles in synthesizing as well as stabilizing the nanoparticle (NPs). Furthermore, genetic engineering techniques can help them to improve their capacity to generate NPs more efficiently. As a result, using microorganisms to manufacture NPs is unique and has a promising future. Microbial-mediated synthesis of NPs has lately been popular as a more environmentally friendly alternative to physical and chemical methods of nanomaterial synthesis, which require higher prices, more energy consumption, and more complex reaction conditions, as well as a potentially dangerous environmental impact. It is critical to consider regulatory measures implemented at all stages of the process, from production through refining, packaging, preservation, and storage, when producing bionanomaterials derived from culturable microbes for efficient food preservation. The current review discusses the synthesis, mechanism of action, and possible food preservation uses of microbial mediated NPs, which can assist to minimize food deterioration from the inside out while also ensuring that food is safe and free of contaminants. Despite the numerous benefits, there are looming debates concerning their usage in food items, particularly regarding its aggregation in human bodies and other risks to the environment. Other applications and impacts of these microbe-fabricated NPs in the context of future food preservation prospects connected with regulatory problems and potential hazards are highlighted.
Collapse
|
10
|
Tovar CA, Lima KO, Alemán A, Montero MP, Gómez-Guillén MC. The effect of chitosan nanoparticles on the rheo-viscoelastic properties and lipid digestibility of oil/vinegar mixtures (vinaigrettes). J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|