1
|
Sato T, Shirai R, Isogai M, Yamamoto M, Miyamoto Y, Yamauchi J. Hyaluronic acid and its receptor CD44, acting through TMEM2, inhibit morphological differentiation in oligodendroglial cells. Biochem Biophys Res Commun 2022; 624:102-111. [DOI: 10.1016/j.bbrc.2022.07.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
|
2
|
Deng X, Chen X, Geng F, Tang X, Li Z, Zhang J, Wang Y, Wang F, Zheng N, Wang P, Yu X, Hou S, Zhang W. Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration. J Nanobiotechnology 2021; 19:400. [PMID: 34856996 PMCID: PMC8641190 DOI: 10.1186/s12951-021-01141-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background The poor regenerative capability and structural complexity make the reconstruction of meniscus particularly challenging in clinic. 3D printing of polymer scaffolds holds the promise of precisely constructing complex tissue architecture, however the resultant scaffolds usually lack of sufficient bioactivity to effectively generate new tissue. Results Herein, 3D printing-based strategy via the cryo-printing technology was employed to fabricate customized polyurethane (PU) porous scaffolds that mimic native meniscus. In order to enhance scaffold bioactivity for human mesenchymal stem cells (hMSCs) culture, scaffold surface modification through the physical absorption of collagen I and fibronectin (FN) were investigated by cell live/dead staining and cell viability assays. The results indicated that coating with fibronectin outperformed coating with collagen I in promoting multiple-aspect stem cell functions, and fibronectin favors long-term culture required for chondrogenesis on scaffolds. In situ chondrogenic differentiation of hMSCs resulted in a time-dependent upregulation of SOX9 and extracellular matrix (ECM) assessed by qRT-PCR analysis, and enhanced deposition of collagen II and aggrecan confirmed by immunostaining and western blot analysis. Gene expression data also revealed 3D porous scaffolds coupled with surface functionalization greatly facilitated chondrogenesis of hMSCs. In addition, the subcutaneous implantation of 3D porous PU scaffolds on SD rats did not induce local inflammation and integrated well with surrounding tissues, suggesting good in vivo biocompatibility. Conclusions Overall, this study presents an approach to fabricate biocompatible meniscus constructs that not only recapitulate the architecture and mechanical property of native meniscus, but also have desired bioactivity for hMSCs culture and cartilage regeneration. The generated 3D meniscus-mimicking scaffolds incorporated with hMSCs offer great promise in tissue engineering strategies for meniscus regeneration. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Xingyu Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Fang Geng
- Medtronic Technology Center, Shanghai, 201114, China
| | - Xin Tang
- Medtronic Technology Center, Shanghai, 201114, China
| | - Zhenzhen Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jie Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yikai Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Hangzhou, Zhejiang Province, China
| | - Fangqian Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Hangzhou, Zhejiang Province, China
| | - Na Zheng
- State Key Laboratory of Chemical Engineering, School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peng Wang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, 210042, China
| | - Xiaohua Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Hangzhou, Zhejiang Province, China. .,Orthopedics Research Institute of Zhejiang University, Hangzhou, 310009, Zhejiang Province, China.
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Wei Zhang
- Medtronic Technology Center, Shanghai, 201114, China.
| |
Collapse
|