1
|
Mohammed R, Chacko SK, Balakrishnan R, Thomas NG, Binsi PK, Muhamed Ashraf P, Krishnan N, Anil S. Catechin as a functional additive in electrospun PCL/gelatin/ nHA nanocomposite fibers for tissue engineering applications. J Appl Polym Sci 2025; 142. [DOI: 10.1002/app.56308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/07/2024] [Indexed: 12/16/2024]
Abstract
AbstractThe promise of polymeric nanocomposite fibers in the biomedical field is well‐documented due to their adjustable properties and versatility. Electrospun fiber mats, which mimic the extracellular matrix, are particularly noted for their potential in tissue regeneration and repair. In this study, we investigate the role of catechin, a flavonoid, in enhancing cellular response to electrospun nanocomposite fibers of polycaprolactone (PCL), gelatin, and nanohydroxyapatite (nHA). Nanocomposite fibers were fabricated with varying concentrations of catechin and comprehensive analyses of the composite fibers were performed to evaluate their structural and chemical properties. In vitro, assays were performed to examine cell viability and ascertain the influence of catechin on cellular responses to these nanocomposite fibers. Simultaneously, in vivo studies assessed tissue responses to these materials. The findings revealed that incorporating catechin into PCL/gelatin/nHA nanocomposite fibers improved cellular responses in vitro as demonstrated by enhanced cell viability. Furthermore, in vivo investigations displayed positive tissue responses with these fibers, indicating their capacity to enhance cell growth and accelerate tissue regeneration. This study elucidates the potential of catechin as an integral component in designing polymeric nanocomposite fibers, potentially broadening the scope of their biomedical applications.
Collapse
Affiliation(s)
- Rubiya Mohammed
- Advanced Materials Research Laboratory, Department of Physics Catholicate College Pathanamthitta Kerala India
- Thunder Bay Regional Health Research Institute Thunder Bay Ontario Canada
- Chemistry and Materials Science Program Lakehead University Thunder Bay Ontario Canada
| | - Sobi K. Chacko
- Advanced Materials Research Laboratory, Department of Physics Catholicate College Pathanamthitta Kerala India
| | - Raneesh Balakrishnan
- Advanced Materials Research Laboratory, Department of Physics Catholicate College Pathanamthitta Kerala India
| | - Nebu George Thomas
- Pushpagiri College of Dental Sciences Pushpagiri Institute of Medical Sciences and Research Centre Thiruvalla Kerala India
- Pushpagiri Research Centre Pushpagiri Institute of Medical Sciences and Research Centre Thiruvalla Kerala India
| | - P. K. Binsi
- ICAR‐ Central Institute of Fisheries Technology, Matsyapuri Cochin Kerala India
| | - P. Muhamed Ashraf
- ICAR‐ Central Institute of Fisheries Technology, Matsyapuri Cochin Kerala India
| | - Nikhil Krishnan
- Pushpagiri Research Centre Pushpagiri Institute of Medical Sciences and Research Centre Thiruvalla Kerala India
| | - Sukumaran Anil
- Pushpagiri Research Centre Pushpagiri Institute of Medical Sciences and Research Centre Thiruvalla Kerala India
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation Qatar University Doha Qatar
| |
Collapse
|
2
|
Rahiman N, Kesharwani P, Karav S, Sahebkar A. Curcumin-based nanofibers: A promising approach for cancer therapy. Pathol Res Pract 2024; 266:155791. [PMID: 39742832 DOI: 10.1016/j.prp.2024.155791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Nanofibers are among the promising platforms for efficient delivery of drugs (both hydrophilic and hydrophobic) through harnessing polymers with different natures as their base. Hydrophobic low-solubility agents such as curcumin could be incorporated in various types of electrospun nanofibers for different aims in drug delivery, such as enhancing its solubility, making this agent sustained release with improved pharmacological efficacy. Through using this nanoplatform, curcumin may become more bioavailable and more efficcious in the field of cancer therapy as well as tissue engineering and wound healing for local delivery of this anti-inflammatory and antioxidant agent. In this review, the characteristics of curcumin-loaded nanofibers, their targeting potential or stimuli-responsiveness accompanied with therapeutic anti-cancerous applications of them (mostly in local application) are securitized. These nanofibers follow the aim of enhancing curcumin's therapeutic effectiveness and release profile. We laso elaborate on the mechanisms of action through which curcumin exerts its effect on various cancerous cells after its incorporation in various types of nanofibers which have been prepared by exploiting different polymers.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Seaf Elnasr TA, Ibrahim OM, Alhumaimess MS, Alsohaimi IH, El-Ossaily YA, Hussein MF, Rafea MA, Hassan HMA, Sobhy SE, Hafez EE, El-Aassar MR. Olive leaf extract-derived chitosan-metal nanocomposite: Green synthesis and dual antimicrobial-anticancer action. Int J Biol Macromol 2024; 270:132252. [PMID: 38729503 DOI: 10.1016/j.ijbiomac.2024.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
In this study, we developed a novel nanocomposite by synthesizing zinc (ZnNPs), copper (CuNPs), and silver (AgNPs) nanoparticles using olive leaf extract and incorporating them into a chitosan polymer. This approach combines the biocompatibility of chitosan with the antimicrobial and anticancer properties of metal nanoparticles, enhanced by the phytochemical richness of olive leaf extract. The significance of our research lies in its potential to offer a biodegradable and stable alternative to conventional antibiotics and cancer treatments, particularly in combating multidrug-resistant bacteria and various cancer types. Comprehensive characterization through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Transmission Electron Microscopy (TEM) confirmed the successful synthesis of the nanocomposites, with an average size of ~22.6 nm. Phytochemical analysis highlighted the antioxidant-rich composition of both the olive leaf extract and the nanoparticles themselves. Functionally, the synthesized nanoparticles exhibited potent antimicrobial activity against multidrug-resistant bacterial strains, outperforming traditional antibiotics by inhibiting key resistance genes (ermC, tetX3-q, blaZ, and Ery-msrA). In anticancer assessments, the nanoparticles showed selective cytotoxicity towards cancer cells in a concentration-dependent manner, with CuNPs and AgNPs showing particularly strong anticancer effects, while demonstrating minimal toxicity towards normal cells. ZnNPs were noted for their low cytotoxicity, highlighting the safety profile of these nanoparticles. Further, the nanoparticles induced apoptosis in cancer cells, as evidenced by the modulation of oncogenes (P21, P53, and BCL2), suggesting their therapeutic potential. The findings of our study underscore the versatile applications of these biogenic nanoparticles in developing safer and more effective antimicrobial and anticancer therapies.
Collapse
Affiliation(s)
- Tarek A Seaf Elnasr
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| | - Omar M Ibrahim
- Department of Medicine and McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mosaed S Alhumaimess
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Ibrahim Hotan Alsohaimi
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Yasser A El-Ossaily
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Modather F Hussein
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Mohamed Abdel Rafea
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Sherien E Sobhy
- Department of Plant Protection and bimolecular diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), P.O. 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Elsayed E Hafez
- Department of Plant Protection and bimolecular diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), P.O. 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Mohamed R El-Aassar
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| |
Collapse
|
4
|
Papadaki S, Tricha N, Panagiotopoulou M, Krokida M. Innovative Bioactive Products with Medicinal Value from Microalgae and Their Overall Process Optimization through the Implementation of Life Cycle Analysis-An Overview. Mar Drugs 2024; 22:152. [PMID: 38667769 PMCID: PMC11050870 DOI: 10.3390/md22040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae are being recognized as valuable sources of bioactive chemicals with important medical properties, attracting interest from multiple industries, such as food, feed, cosmetics, and medicines. This review study explores the extensive research on identifying important bioactive chemicals from microalgae, and choosing the best strains for nutraceutical manufacturing. It explores the most recent developments in recovery and formulation strategies for creating stable, high-purity, and quality end products for various industrial uses. This paper stresses the significance of using Life Cycle Analysis (LCA) as a strategic tool with which to improve the entire process. By incorporating LCA into decision-making processes, researchers and industry stakeholders can assess the environmental impact, cost-effectiveness, and sustainability of raw materials of several approaches. This comprehensive strategy will allow for the choosing of the most effective techniques, which in turn will promote sustainable practices for developing microalgae-based products. This review offers a detailed analysis of the bioactive compounds, strain selection methods, advanced processing techniques, and the incorporation of LCA. It will serve as a valuable resource for researchers and industry experts interested in utilizing microalgae for producing bioactive products with medicinal properties.
Collapse
Affiliation(s)
- Sofia Papadaki
- DIGNITY Private Company, 30-32 Leoforos Alexandrou Papagou, Zografou, 157 71 Athens, Greece
| | - Nikoletta Tricha
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Margarita Panagiotopoulou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| |
Collapse
|
5
|
Zięba M, Sikorska W, Musioł M, Janeczek H, Włodarczyk J, Pastusiak M, Gupta A, Radecka I, Parati M, Tylko G, Kowalczuk M, Adamus G. Designing of Drug Delivery Systems to Improve the Antimicrobial Efficacy in the Periodontal Pocket Based on Biodegradable Polyesters. Int J Mol Sci 2023; 25:503. [PMID: 38203673 PMCID: PMC10778800 DOI: 10.3390/ijms25010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Delivery systems for biologically active substances such as proanthocyanidins (PCANs), produced in the form of electrospun nonwoven through the electrospinning method, were designed using a polymeric blend of poly(L-lactide-co-glycolide) (PLGA)and poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB). The studies involved the structural and thermal characteristics of the developed electrospun three-dimensional fibre matrices unloaded and loaded with PCANs. In the next step, the hydrolytic degradation tests of these systems were performed. The release profile of PCANs from the electrospun nonwoven was determined with the aid of UV-VIS spectroscopy. Approximately 30% of the PCANs were released from the tested electrospun nonwoven during the initial 15-20 days of incubation. The chemical structure of water-soluble oligomers that were formed after the hydrolytic degradation of the developed delivery system was identified through electrospray ionization mass spectrometry. Oligomers of lactic acid and OLAGA oligocopolyester, as well as oligo-3-hydroxybutyrate terminated with hydroxyl and carboxyl end groups, were recognized as degradation products released into the water during the incubation time. It was also demonstrated that variations in the degradation rate of individual mat components influenced the degradation pattern and the number of formed oligomers. The obtained results suggest that the incorporation of proanthocyanidins into the system slowed down the hydrolytic degradation process of the poly(L-lactide-co-glycolide)/poly[(R,S)-3-hydroxybutyrate] three-dimensional fibre matrix. In addition, in vitro cytotoxicity and antimicrobial studies advocate the use of PCANs for biomedical applications with promising antimicrobial activity.
Collapse
Affiliation(s)
- Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
- Department of Optoelectronics, Silesian University of Technology, B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Abhishek Gupta
- Faculty of Science and Engineering, School of Pharmacy, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Iza Radecka
- Faculty of Science and Engineering, Wolverhampton School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (I.R.); (M.P.)
| | - Mattia Parati
- Faculty of Science and Engineering, Wolverhampton School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (I.R.); (M.P.)
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland;
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| |
Collapse
|
6
|
Liu C, Dong S, Wang X, Xu H, Liu C, Yang X, Wu S, Jiang X, Kan M, Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater Today Bio 2023; 21:100729. [PMID: 37529216 PMCID: PMC10387615 DOI: 10.1016/j.mtbio.2023.100729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
7
|
Singbumrung K, Motina K, Inprasit W, Pisitsak P, Inprasit T. A green functionalized method of Cu-BTC on poly(vinyl alcohol)/chitosan composite mat and its antibacterial potential. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
8
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
9
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
10
|
El-Aassar MR, Ibrahim OM, Hashem FS, Ali ASM, Elzain AA, Mohamed FM. Fabrication of Polyaniline@β-cyclodextrin Nanocomposite for Adsorption of Carcinogenic Phenol from Wastewater. ACS APPLIED BIO MATERIALS 2022; 5:4504-4515. [PMID: 36040424 DOI: 10.1021/acsabm.2c00581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We synthesized a stable, eco-friendly, and low-cost polyaniline@β-cyclodextrin (PANI@β-CD) nanocomposite via oxidative polymerization for phenol adsorption from water waste since phenol pollution is a global danger to human and animal health and the environment. The production of the composite and synergistic alteration of PANI with β-CD resulted in 66% reduction in particle size from 59 nm (PANI) to 20 nm (PANI@β-CD) as well as better phenol adsorption. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA) were used to analyze the produced PANI@β-CD nanocomposite. Our results show the optimum conditions for phenol adsorption: time (50 min), pH (8.0), nanosorbent dose (0.5 g), and the sorption isotherm fitted with Langmuir model; the monolayer adsorption capacity of the prepared PANI@β-CD for phenol was determined to be 8.56 mg g-1. The average pore size, total pore volume, and surface area of PANI/βCD nanocomposite are 15.62 nm, 0.1586 cm3/g, and 90.901 m2/g, respectively, for the pseudo second order model. Finally, modifying PANI nanoparticles with βCD allowed reusability up to four cycles with superior adsorption performance of ∼95% using (0.01 N) HNO3.
Collapse
Affiliation(s)
- Mohamed R El-Aassar
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Omar M Ibrahim
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Fayza S Hashem
- Chemistry Department, Faculty of Science, Ain Shams University, P.O. Box 1156, Cairo, Egypt
| | - Ahmed S M Ali
- Nuclear Power Plants Authority (NPPA), P.O. Box 11381, Cairo, Egypt
| | - Ahmed A Elzain
- Nuclear Power Plants Authority (NPPA), P.O. Box 11381, Cairo, Egypt
| | - Fathy M Mohamed
- Faculty of Earth Sciences, Beni-Suef University, P.O. 62521, Beni-Suef, Egypt
| |
Collapse
|
11
|
Ali H, Ibrahim OM, Ali ASM, Mohamed MA, Ghareeb RY, Hafez EE, El-Aassar MR. Cross-Linked Chitosan/Gelatin Beads Loaded with Chlorella vulgaris Microalgae/Zinc Oxide Nanoparticles for Adsorbing Carcinogenic Bisphenol-A Pollutant from Water. ACS OMEGA 2022; 7:27239-27248. [PMID: 35967052 PMCID: PMC9366769 DOI: 10.1021/acsomega.2c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Water polluted by phenolic compounds is a global threat to health and the environment; accordingly, we prepared a green novel sorbent biological system from a chitosan (CS), gelatin (GT), and Chlorella vulgaris freshwater microalgae (m-Alg) composite impregnated with zinc oxide nanoparticles (ZnO-NPs) for the remediation of bisphenol-A (BPA) from water. C. vulgaris was selected to be one of the constituents of the prepared composite because of its high capability in phytoremediation. The morphology and the structure of CS/GT*m-Alg/ZnO beads were characterized by SEM, FTIR, XRD, and TGA. Different monitoring experimental conditions, such as contact time, pH, BPA concentration, and sorbent dosage, were optimized. The optimum conditions for the adsorption process showed outstanding removal efficiency toward BPA at pH 4.0, contact time 40.0 min, and 40.0 mg L-1 BPA initial concentration. Langmuir, Freundlich, and Temkin isotherm models have been studied for adsorption equilibrium, and the best fit is described by the Langmuir adsorption isotherm. The adsorption kinetics has been studied using pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich, and intraparticle diffusion (IPD) models. The pseudo-second-order kinetic model shows the optimum experimental fit. The monolayer adsorption capacity of the prepared CS/GT*m-Alg/ZnO for BPA was determined to be 38.24 mg g-1. The prepared CS/GT*m-Alg/ZnO beads show advantageous properties, such as their high surface area, high adsorption capacity, reusability, and cost-effectiveness.
Collapse
Affiliation(s)
- Hazim
M. Ali
- Chemistry
Department, College of Science, Jouf University, Sakaka-2014, Saudi Arabia
| | - Omar M. Ibrahim
- Department
of Medicine, Washington University School
of Medicine, St. Louis, Missouri 63110, United States
| | | | - Mahmoud A. Mohamed
- Polymer
Materials Research Department Advanced Technology and New Material
Institute, City of Scientific Research and
Technological Applications (SRTA City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Rehab Y. Ghareeb
- Department
of Plant Protection and Bimolecular Diagnosis, Arid Lands Cultivation
Research Institute (ALCRI), City of Scientific
Research and Technological Applications (SRTA City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Elsayed E. Hafez
- Department
of Plant Protection and Bimolecular Diagnosis, Arid Lands Cultivation
Research Institute (ALCRI), City of Scientific
Research and Technological Applications (SRTA City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Mohamed R. El-Aassar
- Chemistry
Department, College of Science, Jouf University, Sakaka-2014, Saudi Arabia
| |
Collapse
|
12
|
Akombaetwa N, Bwanga A, Makoni PA, Witika BA. Applications of Electrospun Drug-Eluting Nanofibers in Wound Healing: Current and Future Perspectives. Polymers (Basel) 2022; 14:2931. [PMID: 35890706 PMCID: PMC9324048 DOI: 10.3390/polym14142931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Wounds are a consequence of disruption in the structure, integrity, or function of the skin or tissue. Once a wound is formed following mechanical or chemical damage, the process of wound healing is initiated, which involves a series of chemical signaling and cellular mechanisms that lead to regeneration and/or repair. Disruption in the healing process may result in complications; therefore, interventions to accelerate wound healing are essential. In addition to mechanical support provided by sutures and traditional wound dressings, therapeutic agents play a major role in accelerating wound healing. The medicines known to improve the rate and extent of wound healing include antibacterial, anti-inflammatory, and proliferation enhancing agents. Nonetheless, the development of these agents into eluting nanofibers presents the possibility of fabricating wound dressings and sutures that provide mechanical support with the added advantage of local delivery of therapeutic agents to the site of injury. Herein, the process of wound healing, complications of wound healing, and current practices in wound healing acceleration are highlighted. Furthermore, the potential role of drug-eluting nanofibers in wound management is discussed, and lastly, the economic implications of wounds as well as future perspectives in applying fiber electrospinning in the design of wound dressings and sutures are considered and reported.
Collapse
Affiliation(s)
- Nakamwi Akombaetwa
- Department of Pharmacy, Livingstone Central Hospital, P.O. Box 60091, Livingstone 10101, Zambia;
| | - Alick Bwanga
- Department of Surgery, University Teaching Adult Hospital, Private Bag RW 1 X Ridgeway, Lusaka 10101, Zambia;
| | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| |
Collapse
|
13
|
El-Deeb NM, Ibrahim OM, Mohamed MA, Farag MMS, Farrag AA, El-Aassar MR. Alginate/κ-carrageenan oral microcapsules loaded with Agaricus bisporus polysaccharides MH751906 for natural killer cells mediated colon cancer immunotherapy. Int J Biol Macromol 2022; 205:385-395. [PMID: 35183600 DOI: 10.1016/j.ijbiomac.2022.02.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022]
Abstract
The current study explores the effect of the extracted novel Mushroom polysaccharides and its formulation onto Alginate (Alg.)/kappa carrageenan microcapsules to exert immunotherapeutic effect upon activating gut resident natural killer cells (NK) against colon cancer. The extracted polysaccharides of Agaricus bisporus MH751906 was microcapsulated in Alg/κ-carrageenan microcapsules as an oral delivery system for colon cancer. The microcapsule is characterized by SEM, FTIR, Raman and TGA; and showed a superior acidic stability, controlled release, and thermal stability at high temperature with higher hydrogel swelling rate in colon-mimicking pH. Upon activation of human NK cells with microcapsules (ANK cells), a significant increase in CD16+CD56+ NK cell populations were recorded. These activated NK cells showed 74.09% cytotoxic effects against human colon cancer Caco-2 cells where majority of cancer cell populations arrested at G0/G1 phase leading to apoptosis. The apoptotic molecular mechanism induced by ANK cells on Caco-2 treated cells is through down regulations of both BCL2 and TGF surviving genes and up regulation in IkappaB-α gene expression. Therefore, this novel polysaccharides-alginate/κ-carrageenan microcapsules can be used as an oral targeted delivery system for colon cancer immunotherapy.
Collapse
Affiliation(s)
- Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt; Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA city), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Omar M Ibrahim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Mahmoud A Mohamed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ayman A Farrag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt; Fermentation Biotechnology and Applied Microbiology Center, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - M R El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia.
| |
Collapse
|
14
|
Kanwal F, Ma M, Rehman MFU, Khan FU, Elizur SE, Batool AI, Wang CC, Tabassum T, Lu C, Wang Y. Aspirin Repurposing in Folate-Decorated Nanoparticles: Another Way to Target Breast Cancer. Front Mol Biosci 2022; 8:788279. [PMID: 35187067 PMCID: PMC8848101 DOI: 10.3389/fmolb.2021.788279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer affects more than 1 million women per year worldwide. Through this study, we developed a nanoparticle-based drug delivery system to target breast cancer cells. Aspirin has been found to inhibit thromboembolic diseases with its tumor-preventing activity. As a consequence, it relieves disease symptoms and severity. Here, mesoporous silica nanoparticles (MNPs) have been used to deliver aspirin to the tumor location. MNP-based aspirin in folic acid (F)-conjugated polydopamine (MNP-Asp-PD-PG-F) vehicles are prepared for targeted breast cancer therapy. The vehicle hinges on MNP altered with polymer polyethylene glycol (PG), polydopamine (PD), and F. The delivery vehicle was studied for in vitro drug release, cytotoxicity, and breast cancer cell proliferation. F-conjugated drug delivery vehicles let MNPs achieve an elevated targeting efficacy, ideal for cancer therapy. It was also observed that compared to free aspirin, our drug delivery system (MNP-Asp-PD-PG-F) has a higher cytotoxic and antiproliferative effect on breast cancer cells. The drug delivery system can be proposed as a targeted breast cancer therapy that could be further focused on other targeted cancer therapies. Delivering aspirin by the PD-PG-F system on the tumor sites promises a therapeutic potential for breast cancer treatment.
Collapse
Affiliation(s)
- Fariha Kanwal
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Muhammad Fayyaz ur Rehman
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
- *Correspondence: Muhammad Fayyaz ur Rehman, ; Yao Wang,
| | - Fahim-ullah Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Shai E. Elizur
- IVF Unit, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel-Hashomer and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tahira Tabassum
- Department of Pathology, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yao Wang
- Department of Assisted Reproduction, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Muhammad Fayyaz ur Rehman, ; Yao Wang,
| |
Collapse
|
15
|
Nanofiber Systems as Herbal Bioactive Compounds Carriers: Current Applications in Healthcare. Pharmaceutics 2022; 14:pharmaceutics14010191. [PMID: 35057087 PMCID: PMC8781881 DOI: 10.3390/pharmaceutics14010191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Nanofibers have emerged as a potential novel platform due to their physicochemical properties for healthcare applications. Nanofibers’ advantages rely on their high specific surface-area-to-volume and highly porous mesh. Their peculiar assembly allows cell accommodation, nutrient infiltration, gas exchange, waste excretion, high drug release rate, and stable structure. This review provided comprehensive information on the design and development of natural-based polymer nanofibers with the incorporation of herbal medicines for the treatment of common diseases and their in vivo studies. Natural and synthetic polymers have been widely used for the fabrication of nanofibers capable of mimicking extracellular matrix structure. Among them, natural polymers are preferred because of their biocompatibility, biodegradability, and similarity with extracellular matrix proteins. Herbal bioactive compounds from natural extracts have raised special interest due to their prominent beneficial properties in healthcare. Nanofiber properties allow these systems to serve as bioactive compound carriers to generate functional matrices with antimicrobial, anti-inflammatory, antioxidant, antiseptic, anti-viral, and other properties which have been studied in vitro and in vivo, mostly to prove their wound healing capacity and anti-inflammation properties.
Collapse
|