1
|
Yan S, Qian Y, Haghayegh M, Xia Y, Yang S, Cao R, Zhu M. Electrospun organic/inorganic hybrid nanofibers for accelerating wound healing: a review. J Mater Chem B 2024; 12:3171-3190. [PMID: 38488129 DOI: 10.1039/d4tb00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Electrospun nanofiber membranes hold great promise as scaffolds for tissue reconstruction, mirroring the natural extracellular matrix (ECM) in their structure. However, their limited bioactive functions have hindered their effectiveness in fostering wound healing. Inorganic nanoparticles possess commendable biocompatibility, which can expedite wound healing; nevertheless, deploying them in the particle form presents challenges associated with removal or collection. To capitalize on the strengths of both components, electrospun organic/inorganic hybrid nanofibers (HNFs) have emerged as a groundbreaking solution for accelerating wound healing and maintaining stability throughout the healing process. In this review, we provide an overview of recent advancements in the utilization of HNFs for wound treatment. The review begins by elucidating various fabrication methods for hybrid nanofibers, encompassing direct electrospinning, coaxial electrospinning, and electrospinning with subsequent loading. These techniques facilitate the construction of micro-nano structures and the controlled release of inorganic ions. Subsequently, we delve into the manifold applications of HNFs in promoting the wound regeneration process. These applications encompass hemostasis, antibacterial properties, anti-inflammatory effects, stimulation of cell proliferation, and facilitation of angiogenesis. Finally, we offer insights into the prospective trends in the utilization of hybrid nanofiber-based wound dressings, charting the path forward in this dynamic field of research.
Collapse
Affiliation(s)
- Sai Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Yuqi Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Marjan Haghayegh
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Yuhan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Shengyuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
2
|
Abdel Khalek MA, Abdelhameed AM, Abdel Gaber SA. The Use of Photoactive Polymeric Nanoparticles and Nanofibers to Generate a Photodynamic-Mediated Antimicrobial Effect, with a Special Emphasis on Chronic Wounds. Pharmaceutics 2024; 16:229. [PMID: 38399283 PMCID: PMC10893342 DOI: 10.3390/pharmaceutics16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review is concerned with chronic wounds, with an emphasis on biofilm and its complicated management process. The basics of antimicrobial photodynamic therapy (PDT) and its underlying mechanisms for microbial eradication are presented. Intrinsically active nanocarriers (polydopamine NPs, chitosan NPs, and polymeric micelles) that can further potentiate the antimicrobial photodynamic effect are discussed. This review also delves into the role of photoactive electrospun nanofibers, either in their eluting or non-eluting mode of action, in microbial eradication and accelerating the healing of wounds. Synergic strategies to augment the PDT-mediated effect of photoactive nanofibers are reviewed.
Collapse
Affiliation(s)
- Mohamed A. Abdel Khalek
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Amr M. Abdelhameed
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, Cairo 11385, Egypt
- Bioscience Research Laboratories Department, MARC for Medical Services and Scientific Research, Giza 11716, Egypt
| | - Sara A. Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
3
|
Cao W, Lin Z, Zheng D, Zhang J, Heng W, Wei Y, Gao Y, Qian S. Metal-organic gels: recent advances in their classification, characterization, and application in the pharmaceutical field. J Mater Chem B 2023; 11:10566-10594. [PMID: 37916468 DOI: 10.1039/d3tb01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Metal-organic gels (MOGs) are a type of functional soft substance with a three-dimensional (3D) network structure and solid-like rheological behavior, which are constructed by metal ions and bridging ligands formed under the driving force of coordination interactions or other non-covalent interactions. As the homologous substances of metal-organic frameworks (MOFs) and gels, they exhibit the potential advantages of high porosity, flexible structure, and adjustable mechanical properties, causing them to attract extensive research interest in the pharmaceutical field. For instance, MOGs are often used as excellent vehicles for intelligent drug delivery and programmable drug release to improve the clinical curative effect with reduced side effects. Also, MOGs are often applied as advanced biomedical materials for the repair and treatment of pathological tissue and sensitive detection of drugs or other molecules. However, despite the vigorous research on MOGs in recent years, there is no systematic summary of their applications in the pharmaceutical field to date. The present review systematically summarize the recent research progress on MOGs in the pharmaceutical field, including drug delivery systems, drug detection, pharmaceutical materials, and disease therapies. In addition, the formation principles and classification of MOGs are complemented and refined, and the techniques for the characterization of the structures/properties of MOGs are overviewed in this review.
Collapse
Affiliation(s)
- Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
4
|
Wang Q, Chen N, Li M, Yao S, Sun X, Feng X, Chen Y. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv Transl Res 2023; 13:386-399. [PMID: 35908132 DOI: 10.1007/s13346-022-01216-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Metal-based nanoparticles (MNPs) represent an emerging class of materials that have attracted enormous attention in many fields. By comparison with other biomaterials, MNPs own unique optical properties which make them a potential alternative to conventional therapeutic agents in medical applications. Especially, owing to the easy access to the skin, the use of MNPs based on their optical properties has gained importance for the treatment of a variety of skin diseases. This review provides an insight into the different optical properties of MNPs, including photoprotection, photocatalysis, and photothermal, and highlights their implications in treating skin disorders, with a special emphasis on their use in infection control. Finally, a perspective on the safety concern of MNPs for dermatological use is discussed and analyzed. The information gathered and presented in this review will help the readers have a comprehensive understanding of utilizing the photo-triggered activity of MNPs for the treatment of skin diseases.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China.
| |
Collapse
|
5
|
Metal-Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics 2023; 15:pharmaceutics15010274. [PMID: 36678903 PMCID: PMC9861052 DOI: 10.3390/pharmaceutics15010274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing global crisis with an increasing number of untreatable or exceedingly difficult-to-treat bacterial infections, due to their growing resistance to existing drugs. It is predicted that AMR will be the leading cause of death by 2050. In addition to ongoing efforts on preventive strategies and infection control, there is ongoing research towards the development of novel vaccines, antimicrobial agents, and optimised diagnostic practices to address AMR. However, developing new therapeutic agents and medicines can be a lengthy process. Therefore, there is a parallel ongoing worldwide effort to develop materials for optimised drug delivery to improve efficacy and minimise AMR. Examples of such materials include functionalisation of surfaces so that they can become self-disinfecting or non-fouling, and the development of nanoparticles with promising antimicrobial properties attributed to their ability to damage numerous essential components of pathogens. A relatively new class of materials, metal-organic frameworks (MOFs), is also being investigated for their ability to act as carriers of antimicrobial agents, because of their ultrahigh porosity and modular structures, which can be engineered to control the delivery mechanism of loaded drugs. Biodegradable polymers have also been found to show promising applications as antimicrobial carriers; and, recently, several studies have been reported on delivery of antimicrobial drugs using composites of MOF and biodegradable polymers. This review article reflects on MOFs and polymer-MOF composites, as carriers and delivery agents of antimicrobial drugs, that have been studied recently, and provides an overview of the state of the art in this highly topical area of research.
Collapse
|
6
|
Gao Q, Bai Q, Zheng C, Sun N, Liu J, Chen W, Hu F, Lu T. Application of Metal–Organic Framework in Diagnosis and Treatment of Diabetes. Biomolecules 2022; 12:biom12091240. [PMID: 36139080 PMCID: PMC9496218 DOI: 10.3390/biom12091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes-related chronic wounds are often accompanied by a poor wound-healing environment such as high glucose, recurrent infections, and inflammation, and standard wound treatments are fairly limited in their ability to heal these wounds. Metal–organic frameworks (MOFs) have been developed to improve therapeutic outcomes due to their ease of engineering, surface functionalization, and therapeutic properties. In this review, we summarize the different synthesis methods of MOFs and conduct a comprehensive review of the latest research progress of MOFs in the treatment of diabetes and its wounds. State-of-the-art in vivo oral hypoglycemic strategies and the in vitro diagnosis of diabetes are enumerated and different antimicrobial strategies (including physical contact, oxidative stress, photothermal, and related ions or ligands) and provascular strategies for the treatment of diabetic wounds are compared. It focuses on the connections and differences between different applications of MOFs as well as possible directions for improvement. Finally, the potential toxicity of MOFs is also an issue that we cannot ignore.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tingli Lu
- Correspondence: ; Tel.: +86-136-5918-8506
| |
Collapse
|
7
|
Metal Complexes of the Porphyrin-Functionalized Polybenzoxazine. Polymers (Basel) 2022; 14:polym14030449. [PMID: 35160439 PMCID: PMC8839356 DOI: 10.3390/polym14030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
New porphyrin-functionalized benzoxazine (Por-BZ) in high purity and yield was synthesized in this study based on 1H and 13C NMR and FTIR spectroscopic analyses through the reduction of Schiff base formed from tetrakis(4-aminophenyl)porphyrin (TAPP) and salicylaldehyde and the subsequent reaction with CH2O. Thermal properties of the product formed through ring-opening polymerization (ROP) of Por-BZ were measured using DSC, TGA and FTIR spectroscopy. Because of the rigid structure of the porphyrin moiety appended to the benzoxazine unit, the temperature required for ROP (314 °C) was higher than the typical Pa-type benzoxazine monomer (ca. 260 °C); furthermore, poly(Por-BZ) possessed a high thermal decomposition temperature (Td10 = 478 °C) and char yield (66 wt%) after thermal polymerization at 240 °C. An investigation of the thermal and luminescence properties of metal–porphyrin complexes revealed that the insertion of Ni and Zn ions decreased the thermal ROP temperatures of the Por-BZ/Ni and Por-BZ/Zn complexes significantly, to 241 and 231 °C, respectively. The metal ions acted as the effective promoter and catalyst for the thermal polymerization of the Por-BZ monomer, and also improved the thermal stabilities after thermal polymerization.
Collapse
|