1
|
Maciejewska M, Rogulska M. Porous Copolymers of 3-(Trimethoxysilyl)propyl Methacrylate with Trimethylpropane Trimethacrylate Preparation: Structural Characterization and Thermal Degradation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4796. [PMID: 39410367 PMCID: PMC11477589 DOI: 10.3390/ma17194796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Porous polymeric microspheres are among the most effective adsorbents. They can be synthesized from numerous monomers using different kinds of polymerization techniques with a broad selection of synthesis factors. The main goal of this study was to prepare copolymeric microspheres and establish the relationship between copolymerization parameters and the porosity and thermal stability of the newly synthesized materials. Porous microspheres were obtained via heterogenous radical copolymerization using 3-(trimethoxysilyl)propyl methacrylate (TMPSM) as functional monomers and trimethylolpropane trimethacrylate (TRIM) as the crosslinker. In the course of the copolymerization, toluene or chlorobenzene was used as the pore-forming diluent. Consequently, highly porous microspheres were produced. Their specific surface area was established by a nitrogen adsorption/desorption method and it was in the range of 382 m2/g to 457 m2/g for toluene and 357-500 m2/g in the case of chlorobenzene. The thermal degradation process was monitored by thermogravimetry and differential scanning calorimetry methods in inert and oxidative conditions. The copolymers were stable up to 269-283 °C in a helium atmosphere, whereas in synthetic air the range was 266-298 °C, as determined by the temperature of 5% mass loss. Thermal stability of the investigated copolymers increased along with an increasing TMPSM amount in the copolymerization mixture. In addition, the poly(TMSPM-co-TRIM) copolymers were effectively used as the stationary phase in GC analyses.
Collapse
Affiliation(s)
- Małgorzata Maciejewska
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland;
| | | |
Collapse
|
2
|
Wawrzkiewicz M, Podkościelna B, Podkościelny P, Gilev JB. New Methyl Methacrylate Derived Adsorbents - Synthesis, Characterization and Adsorptive Removal of Toxic Organic Compounds. Chemphyschem 2024; 25:e202300719. [PMID: 37899309 DOI: 10.1002/cphc.202300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
This study aimed to synthesize polymeric adsorbents by suspension polymerization using methyl methacrylate (MMA) with different crosslinking monomers. Divinylbenzene (DVB) and aliphatic monomers: ethylene glycol dimethacrylate (EGDMA) or N,N'-methylenebisacrylamide (NN) containing additional amide groups were used. The possibility of using the prepared copolymers (MMA-NN, MMA-EGDMA, MMA-DVB) as adsorbents for the removal of toxic compounds such as dyes (C.I. Acid Red 18 (AR18), C.I. Acid Green 16 (AG16), C.I. Acid Violet 1 (AV1), C.I. Basic Yellow 2 (BY2), C.I. Basic Blue 3 (BB3) and C.I. Basic Red 46 (BR46)) and phenol (PhOH) from dye baths and effluents was evaluated. Preferential adsorption of basic-type dyes compared to acid-type dyes or phenol was observed by the polymers. Adsorbent based on MMA-EGDMA exhibited the highest capacity for investigated dyes and phenol. The pseudo-second order kinetic model as well as the intraparticle diffusion model can find application in predicting sorption kinetics. Based on the equilibrium sorption data fitted to the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich model, uptake of BB3, AV1 and PhOH is rather physisorption than chemisorption. The regeneration yield of MMA-EGDMA does not exceed 60 % using 1 M HCl, 1 M NaCl, and 1 M NaOH in 50 %v/v methanol.
Collapse
Affiliation(s)
- Monika Wawrzkiewicz
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in, Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Poland
| | - Beata Podkościelna
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in, Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Poland
| | - Przemysław Podkościelny
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in, Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Poland
| | - Jadranka Blazhevska Gilev
- Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in, Skopje, R. N., Macedonia
| |
Collapse
|
3
|
Maciejewska M, Józwicki M. Porous Polymers Based on 9,10-Bis(methacryloyloxymethyl)anthracene-Towards Synthesis and Characterization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2610. [PMID: 37048904 PMCID: PMC10095706 DOI: 10.3390/ma16072610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Porous materials can be found in numerous essential applications. They are of particular interest when, in addition to their porosity, they have other advantageous properties such as thermal stability or chemical diversity. The main aim of this study was to synthesize the porous copolymers of 9,10-bis(methacryloyloxymethyl)anthracene (BMA) with three different co-monomers divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA) and trimethylpropane trimethacrylate (TRIM). They were synthesized via suspension polymerization using chlorobenzene and toluene served as porogenic solvents. For the characterization of the synthesized copolymers ATR-FTIR spectroscopy, a low-temperature nitrogen adsorption-desorption method, thermogravimetry, scanning electron microscopy, inverse gas chromatography and size distribution analysis were successfully employed. It was found that depending on the used co-monomer and the type of porogen regular polymeric microspheres with a specific surface area in the range of 134-472 m2/g can be effectively synthesized. The presence of miscellaneous functional groups promotes divergent types of interactions Moreover, all of the copolymers show a good thermal stability up to 307 °C. What is important, thanks to application of anthracene derivatives as the functional monomer, the synthesized materials show fluorescence under UV radiation. The obtained microspheres can be used in various adsorption techniques as well as precursor for thermally resistant fluorescent sensors.
Collapse
|
4
|
Goliszek M, Podkościelna B, Smyk N, Sevastyanova O. Towards lignin valorization: lignin as a UV-protective bio-additive for polymer coatings. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Interest in fossil-free, bio-based materials capable of protecting against the harmful effects of UV radiation is constantly growing. The functional groups within lignin are able to effectively absorb light in the visible and UV range, making lignin a good candidate as a bio-additive in UV-protective polymer coatings. In this work, unmodified and modified (by methacrylation) lignin of different origins (softwood [spruce] and hardwood [eucalyptus]) was used as a bio-additive within epoxy resin to develop UV-blocking coatings. Methacrylation of the lignin, as well as the presence of appropriate functional groups in the coatings was confirmed by FTIR spectroscopy. The colour properties of the coatings were additionally investigated whereby the chemical modification of lignin was found to significantly influence the colour of the biocomposite coating. The thermal properties and morphology were investigated by DSC and confocal microscopy, respectively. The results demonstrate that methacrylated lignin is a promising environmentally friendly UV-protective bio-additive for polymer coatings.
Collapse
Affiliation(s)
- Marta Goliszek
- Faculty of Chemistry, Institute of Chemical Science, Analytical Laboratory, Maria Curie-Skłodowska University , M. Curie-Skłodowska Sq. 3, 20-031 Lublin , Poland
| | - Beata Podkościelna
- Department of Polymer Chemistry , Faculty of Chemistry, Institute of Chemical Science, Maria Curie-Skłodowska University , M. Curie-Skłodowska Sq. 5, 20-031 Lublin , Poland
| | - Nataliia Smyk
- Department of Fiber and Polymer Technology , Division of Wood Chemistry and Pulp Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology , Teknikringen 56-58, 100 44 Stockholm , Sweden
- Department of Fiber and Polymer Technology , Wallenberg Wood Science Center, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology , Teknikringen 56-58, 100 44 Stockholm , Sweden
- Department of Analytical Chemistry , Faculty of Chemistry, Taras Shevchenko National University of Kyiv , Lva Tolstogo 12, 01033 Kyiv , Ukraine
| | - Olena Sevastyanova
- Department of Fiber and Polymer Technology , Division of Wood Chemistry and Pulp Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology , Teknikringen 56-58, 100 44 Stockholm , Sweden
- Department of Fiber and Polymer Technology , Wallenberg Wood Science Center, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology , Teknikringen 56-58, 100 44 Stockholm , Sweden
| |
Collapse
|
5
|
Adsorptive Removal of Direct Azo Dyes from Textile Wastewaters Using Weakly Basic Anion Exchange Resin. Int J Mol Sci 2023; 24:ijms24054886. [PMID: 36902317 PMCID: PMC10003106 DOI: 10.3390/ijms24054886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Direct dyes are still widely used for coloring a variety of materials due to their ease of use and the wide range of colors available at a moderate cost of production. In the aquatic environment, some direct dyes, especially the azo type and their biotransformation products, are toxic, carcinogenic and mutagenic. Hence the need for their careful removal from industrial effluents. It was proposed adsorptive retention of C.I. Direct Red 23 (DR23), C.I. Direct Orange 26 (DO26) and C.I. Direct Black 22 (DB22) from effluents using anion exchange resin of tertiary amine functionalities Amberlyst A21 (A21). Applying the Langmuir isotherm model, the monolayer capacities were calculated as 285.6 mg/g for DO26 and 271.1 mg/g for DO23. The Freundlich isotherm model seems to be the better one for the description of DB22 uptake by A21, and the isotherm constant was found to be 0.609 mg1-1/n L1/n/g. The kinetic parameters revealed that the pseudo-second-order model could be used for the description of experimental data rather than the pseudo-first-order model or intraparticle diffusion model. The dye adsorption decreased in the presence of anionic and non-ionic surfactants, while their uptake was enhanced in the presence of Na2SO4 and Na2CO3. Regeneration of the A21 resin was difficult; a slight increase in its efficiency was observed using 1M HCl, 1 M NaOH and 1 M NaCl solutions in 50% v/v methanol.
Collapse
|
6
|
Wawrzkiewicz M, Wołowicz A, Hubicki Z. Strongly Basic Anion Exchange Resin Based on a Cross-Linked Polyacrylate for Simultaneous C.I. Acid Green 16, Zn(II), Cu(II), Ni(II) and Phenol Removal. Molecules 2022; 27:2096. [PMID: 35408494 PMCID: PMC9000238 DOI: 10.3390/molecules27072096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/10/2022] Open
Abstract
The adsorption ability of Lewatit S5528 (S5528) resin for C.I. Acid Green 16 (AG16), heavy metals (Zn(II), Cu(II) and Ni(II)) and phenol removal from single-component aqueous solutions is presented in this study to assess its suitability for wastewater treatment. Kinetic and equilibrium studies were carried out in order to determine adsorption capacities, taking into account phase contact time, adsorbates’ initial concentration, and auxiliary presence (NaCl, Na2SO4, anionic (SDS) and non-ionic (Triton X100) surfactants). The pseudo-second-order kinetic model described experimental data better than pseudo-first-order or intraparticle diffusion models. The adsorption of AG16 (538 mg/g), phenol (14.5 mg/g) and Cu(II) (5.8 mg/g) followed the Langmuir isotherm equation, while the uptake of Zn(II) (0.179 mg1−1/nL1/n/g) and Ni(II) (0.048 mg1−1/nL1/n/g) was better described by the Freundlich model. The auxiliary’s presence significantly reduced AG16 removal efficiency, whereas in the case of heavy metals the changes were negligible. The column studies proved the good adsorption ability of Lewatit S5528 towards AG16 and Zn(II). The desorption was the most effective for AG16 (>90% of dye was eluted using 1 mol/L HCl + 50% v/v MeOH and 1 mol/L NaCl + 50% v/v MeOH solutions).
Collapse
Affiliation(s)
- Monika Wawrzkiewicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland; (A.W.); (Z.H.)
| | | | | |
Collapse
|
7
|
C.I. Basic Red 46 Removal from Sewage by Carbon and Silica Based Composite: Equilibrium, Kinetic and Electrokinetic Studies. Molecules 2022; 27:molecules27031043. [PMID: 35164306 PMCID: PMC8839525 DOI: 10.3390/molecules27031043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
The worldwide production of colored products and intermediates is increasing year on year. The consequence of this is an increase in the number of liquid effluents containing toxic dyes entering the aquatic environment. Therefore, it is extremely important to dispose of them. One of the techniques for the elimination of environmentally harmful dyes is adsorption. The main purpose of this study was to explore the possibility of using a carbon and silica (C/SiO2)-based composite for the removal of the azo dye C.I. Basic Red 46 (BR46). The adsorption capacity of C/SiO2 was found to be temperature dependent and increased from 41.90 mg/g to 176.10 mg/g with a temperature rise from 293 K to 333 K in accordance with the endothermic process. The Langmuir isotherm model seems to be the better one for the description of experimental data rather than Freundlich or Dubinin–Radushkevich. The free energy (ΔGo) confirmed the spontaneous nature of BR46 adsorption by C/SiO2. Kinetic parameters revealed that BR46 uptake followed the pseudo-second-order equation; however, the external diffusion plays a significant role. Surfactants of cationic, anionic and non-ionic type influenced BR46 retention by C/SiO2. The electrokinetic results (solid surface charge density and zeta potential) indicated that the adsorption of cationic dye and surfactant influences the structure of the electrical double layer formed at the solid–liquid interface.
Collapse
|
8
|
Features of Functionalization of the Surface of Alumina Nanofibers by Hydrolysis of Organosilanes on Surface Hydroxyl Groups. Polymers (Basel) 2021; 13:polym13244374. [PMID: 34960925 PMCID: PMC8707266 DOI: 10.3390/polym13244374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Small additions of nanofiber materials make it possible to change the properties of polymers. However, the uniformity of the additive distribution and the strength of its bond with the polymer matrix are determined by the surface of the nanofibers. Silanes, in particular, allow you to customize the surface for better interaction with the matrix. The aim of our work is to study an approach to silanization of nanofibers of aluminum oxide to obtain a perfect interface between the additive and the matrix. The presence of target silanes on the surface of nanofibers was shown by XPS methods. The presence of functional groups on the surface of nanofibers was also shown by the methods of simultaneous thermal analysis, and the stoichiometry of functional groups with respect to the initial hydroxyl groups was studied. The number of functional groups precipitated from silanes is close to the number of the initial hydroxyl groups, which indicates a high uniformity of the coating in the proposed method of silanization. The presented technology for silanizing alumina nanofibers is an important approach to the subsequent use of this additive in various polymer matrices.
Collapse
|