1
|
Chen Y, Guo J, Alamri AS, Alhomrani M, Huang Z, Zhang W. Recent research progress on locust bean gum (LBG)-based composite films for food packaging. Carbohydr Polym 2025; 348:122815. [PMID: 39562090 DOI: 10.1016/j.carbpol.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 11/21/2024]
Abstract
In recent years, there has been an increasing demand for biodegradable/edible biopolymer food packaging films to mitigate the environmental damage caused by petroleum-based plastic food packaging. In this context, locust bean gum (LBG) or carob gum is a galactomannan extracted from the endosperm of carob (Ceratonia siliqua) seeds. Due to its excellent film-forming properties, LBG has been widely used in the development of biodegradable food packaging films. In addition, due to the rich hydroxyl groups in LBG, it can produce synergistic gelation with many biopolymers to form blended films, and LBG has also been used in combination with many additives to form composite films with excellent antibacterial, antioxidant, and barrier properties, including various nanoparticles and plant extracts. Functional composite films based on LBG can effectively extend the shelf life and monitor the freshness of fruits, meats, and other processed foods. Therefore, in this work, we briefly introduce the chemical properties and application progress of LBG, focusing on the performance of various composite LBG food packaging films. Finally, the practical applications of LBG-based composite films and edible coatings in food preservation are summarized.
Collapse
Affiliation(s)
- Yingjie Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Junyan Guo
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Zhang Z, Zhang X, Li Y, Su W, Xu Q, Zhang S, Liang H, Ji C, Lin X. Effects of quercetin- and Lactiplantibacillus plantarum-containing bioactive films on physicochemical properties and microbial safety of grass carp. Food Chem 2024; 450:139472. [PMID: 38705103 DOI: 10.1016/j.foodchem.2024.139472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
In this study, the electrospinning technique was used to co-encapsulate Quercetin (Qu) and Lactiplantibacillus plantarum 1-24-LJ in PVA-based nanofibers, and the effect of bioactive films on fish preservation was evaluated at the first time. The findings indicated that both Lpb. plantarum 1-24-LJ and Qu were successfully in the fibers, and co-loaded fibers considerably outperformed single-loaded fiber in terms of bacterial survival and antioxidant activity. Following fish preservation using the loaded fibers, significant reductions were observed in TVB-N, TBARS, and microbial complexity compared to the control group. Additionally, the co-loaded fibers more effectively reduced the counts of H2S-producing bacteria and Pseudomonas. In the future, fibers with both active substances and LAB hold promise as a novel approach for fish preservation.
Collapse
Affiliation(s)
- Zuoli Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang, College of Food Science and Engineering, Tarim University, Alar 843300, Xinjiang, China
| | - Xianhao Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qian Xu
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang, College of Food Science and Engineering, Tarim University, Alar 843300, Xinjiang, China
| | - Sufang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Huipeng Liang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Institute of Technology, China Resources Beer (Holdings) Company Limited, Room 306 China Resources Building No.8 Jianguomen North Avenue, Dongcheng District, Beijing 100005, China
| | - Chaofan Ji
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinping Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Mujtaba M, Lipponen J, Ojanen M, Puttonen S, Vaittinen H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158328. [PMID: 36037892 DOI: 10.1016/j.scitotenv.2022.158328] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, petroleum-based synthetic plastics are used as a key barrier material in the paper-based packaging of several food and nonfood goods. This widespread usage of plastic as a barrier lining is not only harmful to human and marine health, but it is also polluting the ecosystem. Researchers and food manufacturers are focused on biobased alternatives because of its numerous advantages, including biodegradability, biocompatibility, non-toxicity, and structural flexibility. When used alone or in composites/multilayers, these biobased alternatives provide strong barrier qualities against grease, oxygen, microbes, air, and water. According to the most recent literature reports, biobased polymers for barrier coatings are having difficulty breaking into the business. Technological breakthroughs in the field of bioplastic production and application are rapidly evolving, proffering new options for academics and industry to collaborate and develop sustainable packaging solutions. Existing techniques, such as multilayer coating of nanocomposites, can be improved further by designing them in a more systematic manner to attain the best barrier qualities. Modified nanocellulose, lignin nanoparticles, and bio-polyester are among the most promising future candidates for nanocomposite-based packaging films with high barrier qualities. In this review, the state-of-art and research advancements made in biobased polymeric alternatives such as paper and board barrier coating are summarized. Finally, the existing limitations and potential future development prospects for these biobased polymers as barrier materials are reviewed.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland; VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Juha Lipponen
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland
| | - Mari Ojanen
- Kemira Oyj, Energiakatu 4, 00101 Helsinki, Finland
| | | | - Henri Vaittinen
- Valmet Technologies, Wärtsilänkatu 100, 04440 Järvenpää, Finland
| |
Collapse
|
4
|
Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238265. [PMID: 36500357 PMCID: PMC9736161 DOI: 10.3390/molecules27238265] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Locust bean gum (LBG), a vegetable galactomannan extracted from carob tree seeds, is extensively used in the food industry as a thickening agent (E410). Its molecular conformation in aqueous solutions determines its solubility and rheological performance. LBG is an interesting polysaccharide also because of its synergistic behavior with other biopolymers (xanthan gum, carrageenan, etc.). In addition, this hydrocolloid is easily modified by derivatization or crosslinking. These LBG-related products, besides their applications in the food industry, can be used as encapsulation and drug delivery devices, packaging materials, batteries, and catalyst supports, among other biopharmaceutical and industrial uses. As the new derivatized or crosslinked polymers based on LBG are mainly biodegradable and non-toxic, the use of this polysaccharide (by itself or combined with other biopolymers) will contribute to generating greener products, considering the origin of raw materials used, the modification procedures selected and the final destination of the products.
Collapse
|
5
|
Synergistic Effect of Static Magnetic Field and Modified Atmosphere Packaging in Controlling Blown Pack Spoilage in Meatballs. Foods 2022; 11:foods11101374. [PMID: 35626944 PMCID: PMC9140589 DOI: 10.3390/foods11101374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 02/05/2023] Open
Abstract
This study aimed to compare the microbial diversity in meatballs with or without blown pack spoilage (BPS) to determine the cause of BPS and to assess the synergistic effect of static magnetic field (SMF) and modified atmosphere packaging (MAP) to reduce the phenomenon of BPS. Results showed that the BPS group with a 2.26-fold larger volume and packaging containing 71.85% CO2 had Klebsiella spp. (46.05%) and Escherichia spp. (39.96%) as the dominant bacteria, which was different from the spoilage group. The results of isolation and identification of strains from the BPS group and their inoculation test confirmed that Klebsiella pneumoniae was the major strain-inducing BPS in meatballs due to its pack-swelling ability. SMF (5 mT) treatment combined with MAP (40%CO2 + 60%N2), which did not influence the sensory quality of meatballs, had a significant synergistic effect on preventing the increase in pack volume. Compared with the control group, this synergistic treatment effectively delayed bacterial growth, drop in pH, and the increase of TBARS. The findings of this study will provide further guidance for meatball manufacturers to adopt effective strategies to reduce the BPS of meatballs.
Collapse
|