1
|
Wang Q, Pan L, Bo R, Wang Y, Han Z. Modulating Thermal Conductivity and Flame Retardancy of Polyolefin Composites via Distributed Structures of Magnesium Hydroxide and Hexagonal Boron Nitride. Polymers (Basel) 2024; 16:646. [PMID: 38475329 DOI: 10.3390/polym16050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Thermally conductive and flame-retardant polyolefin composites are facing great challenges in meeting the increasing demands for fire safety and thermal management. Aiming at simultaneously enhancing thermal conductivity and flame retardancy, hexagonal boron nitride (hBN) and magnesium hydroxide (MH) were adopted in ethylene-vinyl acetate copolymer/polyolefin elastomer (EVA/POE) blends to design composites with selective filler distributions and co-continuous networks via different processing schemes. The thermal conductivity and flame retardancy show strong dependence on the distributed structure of hBN and MH. The composites with hBN-rich centers and MH-rich edges in the filled POE phase show a thermal conductivity of 0.70 W/(m·K) and an LOI of 27.7%, which are very close to the thermal conductivity of EVA/POE/hBN and the LOI of EVA/POE/MH at the same total filler content. The composites with MH-rich centers and hBN-rich edges show pHRR, THR and TSP values of 169 kW/m2, 49.8 MJ/m2 and 1.8 m2, which are decreased by 40%, 33% and 62% in comparison with EVA/POE/MH, respectively. Modulating the filler structure distribution provides a strategy to co-enhance thermal conductivity and flame retardancy.
Collapse
Affiliation(s)
- Qi Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Lin Pan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Ruitian Bo
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Yunfei Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Zhidong Han
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
2
|
Li S, Wang C, Wang G, Wang Y, Han Z. Polycarbosilane/Divinylbenzene-Modified Magnesium Hydroxide to Enhance the Flame Retardancy of Ethylene-Vinyl Acetate Copolymer. Polymers (Basel) 2023; 15:4440. [PMID: 38006164 PMCID: PMC10675052 DOI: 10.3390/polym15224440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The thermal decomposition product of magnesium hydroxide (MH) is magnesium oxide (MgO), which serves as the foundational material for fireproof layer construction in the condensed phase. However, the weak interaction force between particles of MgO generated by thermal decomposition leads to the insufficient strength and poor adhesion ability of the fireproof layer. The fireproof layer was easily damaged and detached in this study, resulting in the low flame-retardant efficiency of MH. In this work, polycarbosilane (PCS) and divinyl benzene (DVB) were used to modify MH, and EVA/MH/PCS/DVB composites were made via melt blending. The flame-retardant properties of EVA/MH/PCS/DVB were evaluated using the limiting oxygen index (LOI), vertical combustion (UL-94), and a cone calorimeter (CONE). The thermal stability of the composites and flame retardants was analyzed using a thermogravimetric analyzer. The char layer structure was observed and analyzed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The results indicate that the LOI of the EVA/MH/PCS/DVB with 50 wt.% flame retardants in total was as high as 65.1, which increased by 160% in comparison with EVA/MH. Furthermore, the total smoke production (TSP) of the EVA/MH/PCS/DVB composite decreased by 22.7% compared to EVA/MH/PCS; the thermal stability of the MH/PCS/DVB and EVA/MH/PCS/DVB improved to some extent; and the compact residual char after the combustion of EVA/MH/PCS/DVB had fewer cracks due to the adhesive effect induced by PCS/DVB.
Collapse
Affiliation(s)
- Siyuan Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (S.L.); (G.W.); (Y.W.); (Z.H.)
| | - Chunfeng Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (S.L.); (G.W.); (Y.W.); (Z.H.)
| | - Guodong Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (S.L.); (G.W.); (Y.W.); (Z.H.)
| | - Yongliang Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (S.L.); (G.W.); (Y.W.); (Z.H.)
| | - Zhidong Han
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; (S.L.); (G.W.); (Y.W.); (Z.H.)
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
3
|
Mohd Sabee MMS, Itam Z, Beddu S, Zahari NM, Mohd Kamal NL, Mohamad D, Zulkepli NA, Shafiq MD, Abdul Hamid ZA. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers (Basel) 2022; 14:2911. [PMID: 35890685 PMCID: PMC9324192 DOI: 10.3390/polym14142911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides an intensive overview of flame retardant coating systems. The occurrence of flame due to thermal degradation of the polymer substrate as a result of overheating is one of the major concerns. Hence, coating is the best solution to this problem as it prevents the substrate from igniting the flame. In this review, the descriptions of several classifications of coating and their relation to thermal degradation and flammability were discussed. The details of flame retardants and flame retardant coatings in terms of principles, types, mechanisms, and properties were explained as well. This overview imparted the importance of intumescent flame retardant coatings in preventing the spread of flame via the formation of a multicellular charred layer. Thus, the intended intumescence can reduce the risk of flame from inherently flammable materials used to maintain a high standard of living.
Collapse
Affiliation(s)
- Mohd Meer Saddiq Mohd Sabee
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zarina Itam
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Salmia Beddu
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nazirul Mubin Zahari
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nur Liyana Mohd Kamal
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Daud Mohamad
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Norzeity Amalin Zulkepli
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Mohamad Danial Shafiq
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| |
Collapse
|