1
|
dos Santos Filho EA, Luna CBB, Ferreira EDSB, Siqueira DD, Araújo EM. Production of PLA/NR blends compatibilized with EE-g-GMA and POE-g-GMA: an investigation of mechanical, thermal, thermomechanical properties and morphology. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Performance of Poly(caprolactone) (PCL) as an Impact Modifier for Polystyrene (PS): Effect of Functionalized Compatibilizers with Maleic Anhydride and Glycidyl Methacrylate. SUSTAINABILITY 2022. [DOI: 10.3390/su14159254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, the copolymers ethylene-glycidyl methacrylate (E-GMA), ethylene methyl methacrylate-glycidyl methacrylate (EMA-GMA), and styrene-(ethylene-butylene)-styrene grafted with maleic anhydride (SEBS-g-MA) were used to compatibilize polystyrene (PS)/poly(caprolactone) (PCL) blends. The blends were processed in a co-rotating twin-screw extruder and injection molded. Samples were investigated by torque rheometry, capillary rheometry, impact strength, tensile strength, heat deflection temperature (HDT), dynamic-mechanical thermal analysis (DMTA), thermogravimetry (TG), and scanning electron microscopy (SEM). Torque rheometry indicated that glycidyl methacrylate functional groups and maleic anhydride groups interact with PCL. Capillary rheometry evidenced that at shear rates lower than 10,000 s−1, the PS/PCL/SEBS-g-MA blends presented the highest apparent viscosity among the blends. Such behavior was possibly due to the good interaction between SEBS-g-MA and the PS and PCL phases. Consequently, the properties of impact strength, elongation at break, tensile strength, and elastic modulus were improved by 30%, 109%, 33.8%, and 13.7%, respectively, compared with the non-compatibilized PS/PCL system. There was a reduction in the HDT of all blends compared with neat PS, given the elastomeric characteristics of PCL and compatibilizers. The DMTA results revealed two independent peaks in the blends (one around −53 °C concerning the PCL phase and another at 107 °C related to PS), confirming their immiscibility. The PS/PCL/SEBS-g-MA blends showed higher morphological stability, confirming their good mechanical properties.
Collapse
|
3
|
Fang H, Zhang L, Chen A, Wu F. Improvement of Mechanical Property for PLA/TPU Blend by Adding PLA-TPU Copolymers Prepared via In Situ Ring-Opening Polymerization. Polymers (Basel) 2022; 14:polym14081530. [PMID: 35458279 PMCID: PMC9031752 DOI: 10.3390/polym14081530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Polylactic acid (PLA)-thermoplastic polyurethane (TPU) copolymer (PTC) was prepared by melting TPU pellets in molten lactide, followed by in situ ring-opening coordination polymerization. The results from FTIR and 1H-NMR confirmed the formation of the copolymer. PLA/TPU blends with different TPU contents were prepared by melt blending method. SEM and mechanical properties showed a conspicuous phase separation between PLA and TPU. In order to further improve the mechanical properties of the blend, PTC was used as the compatibilizer and the effects of the PTC content on the properties of the blend were investigated. The addition of PTC made TPU particles smaller in PLA matrix and improved the compatibility. With the loading of 5 wt.% PTC, the impact strength of the PLA/TPU blend reached 27.8 kJ/m2, which was 31.1% and 68.5% higher than that of the blend without PTC and pure PLA, respectively. As the content of PTC was more than 5 wt.%, the mechanical properties declined since the compatibilizer tended to form separate clusters, which could reduce the part distributed between the dispersed phase and the matrix, leading to a reduction in the compatibility of the blend. Moreover, the DMA results confirmed PTC could improve the compatibility between PLA and TPU.
Collapse
Affiliation(s)
- Hui Fang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350011, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou 350011, China
| | - Lingjie Zhang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
| | - Anlin Chen
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
| | - Fangjuan Wu
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350011, China
- Correspondence:
| |
Collapse
|