1
|
Nifontova G, Charlier C, Ayadi N, Fleury F, Karaulov A, Sukhanova A, Nabiev I. Photonic Crystal Surface Mode Real-Time Imaging of RAD51 DNA Repair Protein Interaction with the ssDNA Substrate. BIOSENSORS 2024; 14:43. [PMID: 38248420 PMCID: PMC10813746 DOI: 10.3390/bios14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Photonic crystals (PCs) are promising tools for label-free sensing in drug discovery screening, diagnostics, and analysis of ligand-receptor interactions. Imaging of PC surface modes has emerged as a novel approach to the detection of multiple binding events at the sensor surface. PC surface modification and decoration with recognition units yield an interface providing the highly sensitive detection of cancer biomarkers, antibodies, and oligonucleotides. The RAD51 protein plays a central role in DNA repair via the homologous recombination pathway. This recombinase is essential for the genome stability and its overexpression is often correlated with aggressive cancer. RAD51 is therefore a potential target in the therapeutic strategy for cancer. Here, we report the designing of a PC-based array sensor for real-time monitoring of oligonucleotide-RAD51 recruitment by means of surface mode imaging and validation of the concept of this approach. Our data demonstrate that the designed biosensor ensures the highly sensitive multiplexed analysis of association-dissociation events and detection of the biomarker of DNA damage using a microfluidic PC array. The obtained results highlight the potential of the developed technique for testing the functionality of candidate drugs, discovering new molecular targets and drug entities. This paves the way to further adaption and bioanalytical use of the biosensor for high-content screening to identify new DNA repair inhibitor drugs targeting the RAD51 nucleoprotein filament or to discover new molecular targets.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Cathy Charlier
- Nantes Université, CNRS, US2B, UMR 6286, IMPACT Platform and SFR Bonamy, 44000 Nantes, France;
| | - Nizar Ayadi
- Nantes Université, CNRS, US2B, UMR 6286, DNA Repair Group, 44000 Nantes, France; (N.A.); (F.F.)
| | - Fabrice Fleury
- Nantes Université, CNRS, US2B, UMR 6286, DNA Repair Group, 44000 Nantes, France; (N.A.); (F.F.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
| |
Collapse
|
2
|
Shakurov R, Sizova S, Dudik S, Serkina A, Bazhutov M, Stanaityte V, Tulyagin P, Konopsky V, Alieva E, Sekatskii S, Bespyatykh J, Basmanov D. Dendrimer-Based Coatings on a Photonic Crystal Surface for Ultra-Sensitive Small Molecule Detection. Polymers (Basel) 2023; 15:2607. [PMID: 37376252 DOI: 10.3390/polym15122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
We propose and demonstrate dendrimer-based coatings for a sensitive biochip surface that enhance the high-performance sorption of small molecules (i.e., biomolecules with low molecular weights) and the sensitivity of a label-free, real-time photonic crystal surface mode (PC SM) biosensor. Biomolecule sorption is detected by measuring changes in the parameters of optical modes on the surface of a photonic crystal (PC). We describe the step-by-step biochip fabrication process. Using oligonucleotides as small molecules and PC SM visualization in a microfluidic mode, we show that the PAMAM (poly-amidoamine)-modified chip's sorption efficiency is almost 14 times higher than that of the planar aminosilane layer and 5 times higher than the 3D epoxy-dextran matrix. The results obtained demonstrate a promising direction for further development of the dendrimer-based PC SM sensor method as an advanced label-free microfluidic tool for detecting biomolecule interactions. Current label-free methods for small biomolecule detection, such as surface plasmon resonance (SPR), have a detection limit down to pM. In this work, we achieved for a PC SM biosensor a Limit of Quantitation of up to 70 fM, which is comparable with the best label-using methods without their inherent disadvantages, such as changes in molecular activity caused by labeling.
Collapse
Affiliation(s)
- Ruslan Shakurov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Research Institute for Systems Biology and Medicine (RISBM), Nauchniy Proezd 18, 117246 Moscow, Russia
| | - Svetlana Sizova
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Research Institute for Systems Biology and Medicine (RISBM), Nauchniy Proezd 18, 117246 Moscow, Russia
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Stepan Dudik
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Research Institute for Systems Biology and Medicine (RISBM), Nauchniy Proezd 18, 117246 Moscow, Russia
| | - Anna Serkina
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya Street, 119435 Moscow, Russia
| | - Mark Bazhutov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya Street, 119435 Moscow, Russia
| | - Viktorija Stanaityte
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya Street, 119435 Moscow, Russia
| | - Petr Tulyagin
- Research Institute for Systems Biology and Medicine (RISBM), Nauchniy Proezd 18, 117246 Moscow, Russia
| | - Valery Konopsky
- Institute of Spectroscopy RAS, 5 Fizicheskaya Street, Troitsk, 108840 Moscow, Russia
| | - Elena Alieva
- Institute of Spectroscopy RAS, 5 Fizicheskaya Street, Troitsk, 108840 Moscow, Russia
| | - Sergey Sekatskii
- Laboratory of Biological Electron Microscopy, Institute of Physics (IPHYS), BSP 419, Ecole Polytechnique Fédérale de Lausanne, and Department of Fundamental Biology, Faculty of Biology and Medicine, University of Lausanne, CH1015 Lausanne, Switzerland
| | - Julia Bespyatykh
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Square, 125047 Moscow, Russia
- Institute of Physics and Technology, 9 Institutskiy Pereulok, 141701 Dolgoprudny, Russia
| | - Dmitry Basmanov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya Street, 119435 Moscow, Russia
- Research Institute for Systems Biology and Medicine (RISBM), Nauchniy Proezd 18, 117246 Moscow, Russia
- Institute of Physics and Technology, 9 Institutskiy Pereulok, 141701 Dolgoprudny, Russia
| |
Collapse
|
3
|
Liu R, Cao L, Liu D, Wang L, Saeed S, Wang Z. Laser Interference Lithography-A Method for the Fabrication of Controlled Periodic Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1818. [PMID: 37368248 DOI: 10.3390/nano13121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
A microstructure determines macro functionality. A controlled periodic structure gives the surface specific functions such as controlled structural color, wettability, anti-icing/frosting, friction reduction, and hardness enhancement. Currently, there are a variety of controllable periodic structures that can be produced. Laser interference lithography (LIL) is a technique that allows for the simple, flexible, and rapid fabrication of high-resolution periodic structures over large areas without the use of masks. Different interference conditions can produce a wide range of light fields. When an LIL system is used to expose the substrate, a variety of periodic textured structures, such as periodic nanoparticles, dot arrays, hole arrays, and stripes, can be produced. The LIL technique can be used not only on flat substrates, but also on curved or partially curved substrates, taking advantage of the large depth of focus. This paper reviews the principles of LIL and discusses how the parameters, such as spatial angle, angle of incidence, wavelength, and polarization state, affect the interference light field. Applications of LIL for functional surface fabrication, such as anti-reflection, controlled structural color, surface-enhanced Raman scattering (SERS), friction reduction, superhydrophobicity, and biocellular modulation, are also presented. Finally, we present some of the challenges and problems in LIL and its applications.
Collapse
Affiliation(s)
- Ri Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Liang Cao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Dongdong Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Lu Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Sadaf Saeed
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|