1
|
Jan T, Raheem S, Hanif A, Rydzek G, Peerzada GM, Ariga K, Shang J, Rizvi MA. Adsorptive avidity of Prussian blue polypyrrole nanocomposite for elimination of water contaminants: a case study of malachite green and isoniazid. Phys Chem Chem Phys 2024; 26:16802-16820. [PMID: 38828626 DOI: 10.1039/d4cp01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Persistent water contaminants include a variety of substances that evade natural cleaning processes posing severe risks to ecosystems. Their adsorptive elimination is a key approach to safer attenuation. Herein we present the design and development of Prussian blue incorporated polypyrrole (PPY/PB) hybrid nanocomposite as a high-performance adsorbent for the elimination of malachite green (M.G.), isoniazid (INH) and 4-nitrophenol (4-NP) water contaminants. The nanocomposite synthesis was favored by strong dopant-polymer interactions, leading to a PPY/PB material with enhanced electro-active surface area compared to pristine PPY. The structure-activity response of the nanocomposite for the adsorption of target contaminants was unveiled by evaluating its maximum adsorption capacities under environmentally viable conditions. In-depth analysis and optimization of adsorption influencing factors (pH, temperature, and adsorbent dose) were performed. Using equilibrium studies, kinetic model fitting, aided with FTIR analysis, a multi-step mechanism for the adsorption of target contaminants on the nanocomposite was proposed. Furthermore, the PPY/PB nanocomposite also acts as a catalyst, enabling contaminant elimination following a synergistic scheme that was demonstrated using 4-NP contaminant. The synergetic adsorption and catalytic degradation of 4-NP using PPY/PB as adsorbent and catalyst was demonstrated in the presence of NaBH4 as a reducing agent in absence of light. In summary, this work highlights the targeted design of adsorbent, its optimization for adsorptive avidity, and the synergistic role of adsorption trapping in the catalytic degradation of persistent contaminants.
Collapse
Affiliation(s)
- Tabee Jan
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir-190006, India.
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir-190006, India.
| | - Aamir Hanif
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Gaulthier Rydzek
- Institut Charles Gerhardt, UMR 5253, CNRS/ENSCM/UM, ENSCM, Montpellier cedex F-34295, France
| | - G M Peerzada
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir-190006, India.
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| | - Jin Shang
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, P. R. China
| | - Masood Ahmad Rizvi
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir-190006, India.
| |
Collapse
|
2
|
Perdana MY, Johan BA, Abdallah M, Hossain ME, Aziz MA, Baroud TN, Drmosh QA. Understanding the Behavior of Supercapacitor Materials via Electrochemical Impedance Spectroscopy: A Review. CHEM REC 2024; 24:e202400007. [PMID: 38621230 DOI: 10.1002/tcr.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Energy harvesting and energy storage are two critical aspects of supporting the energy transition and sustainability. Many studies have been conducted to achieve excellent performance devices for these two purposes. As energy-storing devices, supercapacitors (SCs) have tremendous potential to be applied in several sectors. Some electrochemical characterizations define the performance of SCs. Electrochemical impedance spectroscopy (EIS) is one of the most powerful analyses to determine the performance of SCs. Some parameters obtained from this analysis include bulk resistance, charge-transfer resistance, total resistance, specific capacitance, response frequency, and response time. This work provides a holistic and comprehensive review of utilizing EIS for SC characterization. Overall, researchers can benefit from this review by gaining a comprehensive understanding of the utilization of electrochemical impedance spectroscopy (EIS) for characterizing supercapacitors (SCs), enabling them to enhance SC performance and contribute to the advancement of energy harvesting and storage technologies.
Collapse
Affiliation(s)
- Muhamad Yudatama Perdana
- Physics Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Bashir Ahmed Johan
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Muaz Abdallah
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Emdad Hossain
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen technology and carbon management (IRC-HTCM), King Fahd University of Petroleum and Minerals, P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Turki Nabieh Baroud
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Qasem Ahmed Drmosh
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen technology and carbon management (IRC-HTCM), King Fahd University of Petroleum and Minerals, P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Arumugam C, Kandasamy SK, Subramaniam TK. Enhancing Supercapacitor Performance Using ZnO Embedded on GO/PPy Composite as Versatile Electrodes. HIGH ENERGY CHEMISTRY 2023. [DOI: 10.1134/s0018143923010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Kosa SAM, Khan AN, Ahmed S, Aslam M, Bawazir WA, Hameed A, Soomro MT. Strategic Electrochemical Determination of Nitrate over Polyaniline/Multi-Walled Carbon Nanotubes-Gum Arabic Architecture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3542. [PMID: 36234668 PMCID: PMC9565846 DOI: 10.3390/nano12193542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Significant agricultural and industrial activities necessitate the regular monitoring of nitrate (NO3-) ions levels in feed and groundwater. The current comparative study discloses an innovative user-friendly electrochemical approach for the determination of NO3- over polyaniline (PAni)-based modified electrodes. The electrochemical sensors concocted with PAni, multi-walled carbon nanotubes (CNT), and gum arabic (GA). The unique electrode material GA@PAni-CNT was synthesized by facile one-pot catalytic polymerization of aniline (Ani) with FeCl3/H2O2 in the presence of CNT and GA as integral components. As revealed by cyclic voltammetry (CV), the anchoring/retention of NO3- followed by reduction is proposed to occur when a GA@PAni-CNT electrode is immersed in phosphate buffer electrolyte containing NO3- that eventually results in a significantly higher redox activity of the GA@PAni-CNT electrode upon potential scan. The mechanism of NO3- anchoring may be associated with the non-redox transition of leucomeraldine salt (LS) into emeraldine salt (ES) and the generation of nitrite (NO2-) ions. As a result, the oxidation current produced by CV for redox transition of ES ↔ pernigraniline (PN) was ~9 times of that obtained with GA@PAni-CNT electrode and phosphate buffer electrolyte, thus achieving indirect NO3- voltammetric determination of the GA@PAni-CNT electrode. The prepared GA@PAni-CNT electrode displayed a higher charge transfer ability as compared to that of PAni-CNT and PAni electrodes. The optimum square wave voltammetric (SWV) response resulted in two linear concentration ranges of 1-10 (R2 = 0.9995) and 15-50 µM (R2 = 0.9988) with a detection limit of 0.42 µM, which is significantly lower. The GA@PAni-CNT electrode demonstrated the best detection, sensitivity, and performance among the investigated electrodes for indirect voltammetric determination of NO3- that portrayed the possibility of utilizing GA-stabilized PAni and CNT nanocomposite materials in additional electrochemical sensing applications.
Collapse
Affiliation(s)
| | - Amna Nisar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sana Ahmed
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Applied Chemistry, Engineering School, Kyungpook National University, Daegu 41566, Korea
| | - Mohammad Aslam
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wafa AbuBaker Bawazir
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdul Hameed
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- National Center of Physics, Quaid-e-Azam University, Islamabad 44000, Pakistan
| | - Muhammad Tahir Soomro
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Tang J, Zhao Y, Sunarso J, Wong NH, Zhou J, Zhuo S. Sustainable Polyurethane‐Derived Heteroatom‐Doped Electrode Materials for Advanced Supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianguo Tang
- School of Chemistry and Chemical Engineering Analytical Testing Center Shandong University of Technology Zibo 255049 China
| | - Yi Zhao
- School of Chemistry and Chemical Engineering Analytical Testing Center Shandong University of Technology Zibo 255049 China
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies Faculty of Engineering, Computing and Science Swinburne University of Technology Kuching 93350 Malaysia
| | - Ngie Hing Wong
- Research Centre for Sustainable Technologies Faculty of Engineering, Computing and Science Swinburne University of Technology Kuching 93350 Malaysia
| | - Jin Zhou
- School of Chemistry and Chemical Engineering Analytical Testing Center Shandong University of Technology Zibo 255049 China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering Analytical Testing Center Shandong University of Technology Zibo 255049 China
| |
Collapse
|