1
|
Oh S, Stache EE. Recent advances in oxidative degradation of plastics. Chem Soc Rev 2024; 53:7309-7327. [PMID: 38884337 DOI: 10.1039/d4cs00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Oxidative degradation is a powerful method to degrade plastics into oligomers and small oxidized products. While thermal energy has been conventionally employed as an external stimulus, recent advances in photochemistry have enabled photocatalytic oxidative degradation of polymers under mild conditions. This tutorial review presents an overview of oxidative degradation, from its earliest examples to emerging strategies. This review briefly discusses the motivation and the development of thermal oxidative degradation of polymers with a focus on underlying mechanisms. Then, we will examine modern studies primarily relevant to catalytic thermal oxidative degradation and photocatalytic oxidative degradation. Lastly, we highlight some unique studies using unconventional approaches for oxidative polymer degradation, such as electrochemistry.
Collapse
Affiliation(s)
- Sewon Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Erin E Stache
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
2
|
Hiranphinyophat S, Hiraoka T, Kobayashi M, Fujii S, Kishida A, Tanabe T, Kimura T, Yamamoto M. Fabrication of Polypropylene Nanoplastics Via Thermal Oxidation Reaction for Human Cells Responsiveness Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15563-15571. [PMID: 37882450 DOI: 10.1021/acs.langmuir.3c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
With the current worldwide increasing use of plastics year by year, nanoplastics (NPs) have become a global threat to environmental and public health concerns. Among plastics, polypropylene (PP) is widely used in industrial and medical applications. Owing to the lack of validated detection methods and standard materials for PP NPs, understanding the impact of PP NPs on the environmental and biological systems is still limited. Here, isotactic polypropylene (iPP) was fabricated into oxidized polypropylene micro/nanoplastics (OPPs) via a thermal oxidation using hydrogen peroxide (H2O2) under various heating temperatures. The resulting OPPs were investigated in terms of the size distribution, surface chemistry, morphology, and thermal property as well as their concentration-dependent cytotoxicity to a human intestinal epithelial cell line (Caco-2), which could be a route to uptake NPs into the body through the food chain. The average diameters of the OPPs decrease with increasing reaction temperature. The OPPs obtained at 175 °C (OPP175) were spherical in shape and had a rough surface, with size distributions of approximately 0.14 ± 0.02 μm. A significant increase in the carbonyl content of the oxidized product was confirmed by Fourier transform infrared and X-ray photoelectron spectroscopy analyses. Caco-2 cells were exposed to OPP175 in a dose-dependent manner, and a significant loss of cell viability occurred at the concentration of 100 μg/mL. Thus, this study provides a fundamental approach for the fabrication of a model of NPs for the urgently demanded in vitro and in vivo studies to assess the potential impact of NPs on biological systems.
Collapse
Affiliation(s)
- Suphatra Hiranphinyophat
- Graduate School of Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Tomoki Hiraoka
- Graduate School of Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mako Kobayashi
- Graduate School of Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Sho Fujii
- Department of Natural Sciences, National Institute of Technology, Kisarazu College, 2-11-1 Kiyomidai Higashi, Kisarazu, Chiba 292-0041, Japan
| | - Akio Kishida
- Department of Material-based Medical Engineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tadao Tanabe
- School of Engineering and Design, Shibaura Institute of Technology, 3-9-14 Shibaura, Minato-ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Department of Material-based Medical Engineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masaya Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
3
|
Lejarazu-Larrañaga A, Landaburu-Aguirre J, Senán-Salinas J, Ortiz JM, Molina S. Thin Film Composite Polyamide Reverse Osmosis Membrane Technology towards a Circular Economy. MEMBRANES 2022; 12:membranes12090864. [PMID: 36135883 PMCID: PMC9502371 DOI: 10.3390/membranes12090864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 05/31/2023]
Abstract
It is estimated that Reverse Osmosis (RO) desalination will produce, by 2025, more than 2,000,000 end-of-life membranes annually worldwide. This review examines the implementation of circular economy principles in RO technology through a comprehensive analysis of the RO membrane life cycle (manufacturing, usage, and end-of-life management). Future RO design should incorporate a biobased composition (biopolymers, recycled materials, and green solvents), improve the durability of the membranes (fouling and chlorine resistance), and facilitate the recyclability of the modules. Moreover, proper membrane maintenance at the usage phase, attained through the implementation of feed pre-treatment, early fouling detection, and membrane cleaning methods can help extend the service time of RO elements. Currently, end-of-life membranes are dumped in landfills, which is contrary to the waste hierarchy. This review analyses up to now developed alternative valorisation routes of end-of-life RO membranes, including reuse, direct and indirect recycling, and energy recovery, placing a special focus on emerging indirect recycling strategies. Lastly, Life Cycle Assessment is presented as a holistic methodology to evaluate the environmental and economic burdens of membrane recycling strategies. According to the European Commission's objectives set through the Green Deal, future perspectives indicate that end-of-life membrane valorisation strategies will keep gaining increasing interest in the upcoming years.
Collapse
Affiliation(s)
| | | | - Jorge Senán-Salinas
- BETA Tech. Center, University of Vic-Central University of Catalonia, Ctra. de Roda, 70, 08500 Vic, Spain
| | - Juan Manuel Ortiz
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Serena Molina
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|