1
|
Mutmainna I, Gareso PL, Suryani S, Tahir D. Microplastics from petroleum-based plastics and their effects: A systematic literature review and science mapping of global bioplastics production. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1892-1911. [PMID: 38980276 DOI: 10.1002/ieam.4976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
The use of bioplastics is a new strategy for reducing microplastic (MP) waste caused by petroleum-based plastics. This problem has received increased attention worldwide, leading to the development of large-scale bioplastic plants. The large amount of MPs in aquatic and terrestrial environments and the atmosphere has raised global concern. This article delves into the profound environmental impact of the increasing use of petroleum-based plastics, which contribute significantly to plastic waste and, as a consequence, to the increase in MPs. We conducted a comprehensive analysis to identify countries that are at the forefront of efforts to produce bioplastics to reduce MP pollution. In this article, we explain the development, degradation processes, and research trends of bioplastics derived from biological materials such as starch, chitin, chitosan, and polylactic acid (PLA). The findings pinpoint the top 10 countries demonstrating a strong commitment to reducing MP pollution through bioplastics. These nations included the United States, China, Spain, Canada, Italy, India, the United Kingdom, Malaysia, Belgium, and the Netherlands. This study underscores the technical and economic obstacles to large-scale bioplastic production. Integr Environ Assess Manag 2024;20:1892-1911. © 2024 SETAC.
Collapse
Affiliation(s)
| | | | - Sri Suryani
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
2
|
Samaniego-Aguilar K, Sánchez-Safont E, Rodríguez A, Marín A, Candal MV, Cabedo L, Gamez-Perez J. Valorization of Agricultural Waste Lignocellulosic Fibers for Poly(3-Hydroxybutyrate-Co-Valerate)-Based Composites in Short Shelf-Life Applications. Polymers (Basel) 2023; 15:4507. [PMID: 38231949 PMCID: PMC10707919 DOI: 10.3390/polym15234507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 01/19/2024] Open
Abstract
Biocircularity could play a key role in the circular economy, particularly in applications where organic recycling (composting) has the potential to become a preferred waste management option, such as food packaging. The development of fully biobased and biodegradable composites could help reduce plastic waste and valorize agro-based residues. In this study, extruded films made of composites of polyhydroxybutyrate-co-valerate (PHBV) and lignocellulosic fibers, namely almond shell (AS) and Oryzite® (OR), a polymer hybrid composite precursor, have been investigated. Scanning electron microscopy (SEM) analysis revealed a weak fiber-matrix interfacial interaction, although OR composites present a better distribution of the fiber and a virtually lower presence of "pull-out". Thermogravimetric analysis showed that the presence of fibers reduced the onset and maximum degradation temperatures of PHBV, with a greater reduction observed with higher fiber content. The addition of fibers also affected the melting behavior and crystallinity of PHBV, particularly with OR addition, showing a decrease in crystallinity, melting, and crystallization temperatures as fiber content increased. The mechanical behavior of composites varied with fiber type and concentration. While the incorporation of AS results in a reduction in all mechanical parameters, the addition of OR leads to a slight improvement in elongation at break. The addition of fibers improved the thermoformability of PHBV. In the case of AS, the improvement in the processing window was achieved at lower fiber contents, while in the case of OR, the improvement was observed at a fiber content of 20%. Biodisintegration tests showed that the presence of fibers promoted the degradation of the composites, with higher fiber concentrations leading to faster degradation. Indeed, the time of complete biodisintegration was reduced by approximately 30% in the composites with 20% and 30% AS.
Collapse
Affiliation(s)
- Kerly Samaniego-Aguilar
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
| | - Estefanía Sánchez-Safont
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
- CEBIMAT Lab S.L., Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain
| | - Andreina Rodríguez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
| | - Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
| | - María V. Candal
- School of Engineering, Science and Technology, Valencian International University (VIU), 46002 Valencia, Spain;
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
- CEBIMAT Lab S.L., Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain
| | - Jose Gamez-Perez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
- CEBIMAT Lab S.L., Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain
| |
Collapse
|
3
|
Fei B, Wang D, AlMasoud N, Yang H, Yang J, Alomar TS, Puangsin B, Xu BB, Algadi H, El-Bahy ZM, Guo Z, Shi Z. Bamboo fiber strengthened poly(lactic acid) composites with enhanced interfacial compatibility through a multi-layered coating of synergistic treatment strategy. Int J Biol Macromol 2023; 249:126018. [PMID: 37517757 DOI: 10.1016/j.ijbiomac.2023.126018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
In this study, a mild and eco-friendly synergistic treatment strategy was investigated to improve the interfacial compatibility of bamboo fibers with poly(lactic acid). The characterization results in terms of the chemical structure, surface morphology, thermal properties, and water resistance properties demonstrated a homogeneous dispersion and excellent interfacial compatibility of the treated composites. The excellent interfacial compatibility is due to multi-layered coating of bamboo fibers using synergistic treatment involving dilute alkali pretreatment, polydopamine coating and silane coupling agent modification. The composites obtained using the proposed synergistic treatment strategy exhibited excellent mechanical properties. Optimal mechanical properties were observed for composites with synergistically treated bamboo fiber mass proportion of 20 %. The tensile strength, elongation at break and tensile modulus of the treated composites were increased by 63.06 %, 183.04 % and 259.04 %, respectively, compared to the untreated composites. This synergistic treatment strategy and the remarkable performance of the treated composites have a wide range of applicability in bio-composites (such as industrial packaging, automotive lightweight interiors, and consumer goods).
Collapse
Affiliation(s)
- Binqi Fei
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Dawei Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Haiyan Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jing Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Buapan Puangsin
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand.
| | - Ben Bin Xu
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Hassan Algadi
- Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Zhengjun Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
4
|
Sharma N, Vuppu S. In Silico Study of Enzymatic Degradation of Bioplastic by Microalgae: An Outlook on Microplastic Environmental Impact Assessment, Challenges, and Opportunities. Mol Biotechnol 2023:10.1007/s12033-023-00886-w. [PMID: 37758971 DOI: 10.1007/s12033-023-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Microplastics are tiny pieces of non-biodegradable plastic that can take thousands of years to break down. As microplastics degrade, they release harmful compounds into the environment, which can be found in the surroundings. The microplastics found in the environment are hard to detect and remove because of their small particle sizes. Microplastics cannot decompose naturally, so they accumulate in the environment and cause pollution. As a result, bioplastics can be produced from a vast array of substrates, including biopolymers, citrus peels, leather, and feather wastes. Blue-green microalgae namely Arthrospira platensis (spirulina) contains enzymes such as laccase and catalase which can be responsible for the degradation of bioplastics. In our study, we performed molecular docking to identify the binding affinities of different enzymes such as laccase and catalase with different substrates, focusing on determining the most suitable substrate for enhancing enzyme activity for degradation of bioplastics. The analysis revealed that veratryl alcohol is the most suitable substrate for laccase, whereas lignin is the more preferred substrate for catalase with the highest binding affinity score of - 5.9 and - 8.1 kcal/mol. Moreover, degradation, challenges, opportunities, and applications of bioplastics in numerous domains such as cosmetics, electronics, agriculture, medical, textiles, and food industries have also been highlighted.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Suneetha Vuppu
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
5
|
Mukherjee A, Koller M. Microbial PolyHydroxyAlkanoate (PHA) Biopolymers-Intrinsically Natural. Bioengineering (Basel) 2023; 10:855. [PMID: 37508882 PMCID: PMC10376151 DOI: 10.3390/bioengineering10070855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Global pollution from fossil plastics is one of the top environmental threats of our time. At their end-of-life phase, fossil plastics, through recycling, incineration, and disposal result in microplastic formation, elevated atmospheric CO2 levels, and the pollution of terrestrial and aquatic environments. Current regional, national, and global regulations are centered around banning plastic production and use and/or increasing recycling while ignoring efforts to rapidly replace fossil plastics through the use of alternatives, including those that occur in nature. In particular, this review demonstrates how microbial polyhydroxyalkanoates (PHAs), a class of intrinsically natural polymers, can successfully remedy the fossil and persistent plastic dilemma. PHAs are bio-based, biosynthesized, biocompatible, and biodegradable, and thus, domestically and industrially compostable. Therefore, they are an ideal replacement for the fossil plastics pollution dilemma, providing us with the benefits of fossil plastics and meeting all the requirements of a truly circular economy. PHA biopolyesters are natural and green materials in all stages of their life cycle. This review elaborates how the production, consumption, and end-of-life profile of PHAs are embedded in the current and topical, 12 Principles of Green Chemistry, which constitute the basis for sustainable product manufacturing. The time is right for a paradigm shift in plastic manufacturing, use, and disposal. Humankind needs alternatives to fossil plastics, which, as recalcitrant xenobiotics, contribute to the increasing deterioration of our planet. Natural PHA biopolyesters represent that paradigm shift.
Collapse
Affiliation(s)
- Anindya Mukherjee
- The Global Organization for PHA (GO!PHA), 12324 Hampton Way, Wake Forest, NC 27587, USA
- PHAXTEC, Inc., 2 Davis Drive, Research Triangle Park, Durham, NC 27709, USA
| | - Martin Koller
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria
| |
Collapse
|
6
|
Natural antimicrobial systems protected by complex polyhydroxyalkanoate matrices for food biopackaging applications - A review. Int J Biol Macromol 2023; 233:123418. [PMID: 36731700 DOI: 10.1016/j.ijbiomac.2023.123418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
Interest is growing in entrapping natural antimicrobial compounds (NACs) within polyhydroxyalkanoates (PHAs) to produce active food-biopackaging systems. PHAs are versatile polymeric macromolecules that can protect NAC activity by entrapment. This work reviews 75 original papers and 18 patents published in the last 11 years concerning PHAs as matrices for NACs to summarize the physicochemical properties, release, and antimicrobial activities of systems fabricated from PHAs and NACs (PHA/NAC systems). PHA/NAC systems have recently been used as active food biopackaging systems to inactivate foodborne pathogens and prolong food shelf life. PHAs protect NACs by increasing the degradation temperature of some NACs and decreasing their loss of mass when heated. Some NACs also transform the PHA/NAC systems into more thermostable, flexible, and resistant when interacting with PHAs while also improving the barrier properties of the systems. NAC release and activity are also prolonged when NACs are trapped within PHAs. PHA/NAC systems, therefore, represent ecologically friendly materials with promising applications.
Collapse
|
7
|
Máčalová D, Janalíková M, Sedlaříková J, Rektoříková I, Koutný M, Pleva P. Genotypic and Phenotypic Detection of Polyhydroxyalkanoate Production in Bacterial Isolates from Food. Int J Mol Sci 2023; 24:ijms24021250. [PMID: 36674766 PMCID: PMC9864133 DOI: 10.3390/ijms24021250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are widely used in medical and potentially in other applications due to their biocompatibility and biodegradability. Understanding PHA biosynthetic pathways may lead to the detection of appropriate conditions (substrates) for producing a particular PHA type by a specific microbial strain. The aim of this study was to establish a method enabling potentially interesting PHA bacterial producers to be found. In the study, all four classes of PHA synthases and other genes involved in PHA formation (fabG, phaA, phaB, phaG, and phaJ) were detected by PCR in 64 bacterial collection strains and food isolates. Acinetobacter, Bacillus, Cupriavidus, Escherichia, Klebsiella, Lelliottia, Lysinibacillus, Mammaliicoccus, Oceanobacillus, Pantoea, Peribacillus, Priestia, Pseudomonas, Rahnella, Staphylococcus, and Stenotrophomonas genera were found among these strains. Fructose, glucose, sunflower oil, and propionic acid were utilized as carbon sources and PHA production was detected by Sudan black staining, Nile blue staining, and FTIR methods. The class I synthase and phaA genes were the most frequently found, indicating the strains' ability to synthesize PHA from carbohydrates. Among the tested bacterial strains, the Pseudomonas genus was identified as able to utilize all tested carbon sources. The Pseudomonas extremorientalis strain was determined as a prospect for biotechnology applications.
Collapse
Affiliation(s)
- Daniela Máčalová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Jana Sedlaříková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Iveta Rektoříková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Marek Koutný
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Pavel Pleva
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
- Correspondence:
| |
Collapse
|
8
|
Sinsukudomchai P, Aht-Ong D, Honda K, Napathorn SC. Green composites made of polyhydroxybutyrate and long-chain fatty acid esterified microcrystalline cellulose from pineapple leaf. PLoS One 2023; 18:e0282311. [PMID: 36867618 PMCID: PMC9983910 DOI: 10.1371/journal.pone.0282311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Pineapple leaf fibres are an abundant agricultural waste product that contains 26.9% cellulose. The objective of this study was to prepare fully degradable green biocomposites made of polyhydroxybutyrate (PHB) and microcrystalline cellulose from pineapple leaf fibres (PALF-MCC). To improve compatibility with PHB, the PALF-MCC was surface modified using lauroyl chloride as an esterifying agent. The influence of the esterified PALF-MCC laurate content and changes in the film surface morphology on biocomposite properties was studied. The thermal properties obtained by differential scanning calorimetry revealed a decrease in crystallinity for all biocomposites, with 100 wt% PHB displaying the highest values, whereas 100 wt% esterified PALF-MCC laurate showed no crystallinity. The addition of esterified PALF-MCC laurate increased the degradation temperature. The maximum tensile strength and elongation at break were exhibited when adding 5% of PALF-MCC. The results demonstrated that adding esterified PALF-MCC laurate as a filler in the biocomposite film could retain a pleasant value of tensile strength and elastic modulus whereas a slight increase in elongation can help to enhance flexibility. For soil burial testing, PHB/ esterified PALF-MCC laurate films with 5-20% (w/w) PALF-MCC laurate ester had higher degradation than films consisting of 100% PHB or 100% esterified PALF-MCC laurate. PHB and esterified PALF-MCC laurate derived from pineapple agricultural wastes are particularly suitable for the production of relatively low-cost biocomposite films that are 100% compostable in soil.
Collapse
Affiliation(s)
- Pitchanun Sinsukudomchai
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Duangdao Aht-Ong
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, Thailand
- International Center for Biotechnology, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
9
|
Ibarretxe J, Alonso L, Aranburu N, Guerrica-Echevarría G, Orbea A, Iturrondobeitia M. Sustainable PHBH-Alumina Nanowire Nanocomposites: Properties and Life Cycle Assessment. Polymers (Basel) 2022; 14:polym14225033. [PMID: 36433160 PMCID: PMC9697647 DOI: 10.3390/polym14225033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is a bio-based polyester with the potential to replace some common polymers of fossil origin. However, PHBH presents serious limitations, such as low stiffness, tendency to undergo crystallization over long time periods and low resistance to thermal degradation during processing. In this work, we studied the use of alumina nanowires to generate PHBH-alumina nanocomposites, modifying the properties of PHBH to improve its usability. Solvent casting and melt blending were used to produce the nanocomposites. Then, their physicochemical properties and aquatic toxicity were measured. Finally, LCA was used to evaluate and compare the environmental impacts of several scenarios relevant to the processing and end of life (EoL) conditions of PHBHs. It was observed that, at low concentrations (3 wt.%), the alumina nanowires have a small positive impact on the stiffness and thermal degradation for the samples. However, for higher concentrations, the observed effects differed for each of the applied processing techniques (solvent casting or melt blending). The toxicity measurements showed that PHBH alone and in combination with alumina nanowires (10 wt.%) did not produce any impact on the survival of brine shrimp larvae after 24 and 48 h of exposure. The 18 impact categories evaluated by LCA allowed defining the most environmentally friendly conditions for the processing and EoL of PHBHs, and comparing the PHBH-related impacts to those of some of the most common fossil-based plastics. It was concluded that the preferable processing technique for PHBH is melt blending and that PHBH is unquestionably more environmentally friendly than every other analyzed plastic.
Collapse
Affiliation(s)
- Julen Ibarretxe
- eMERG Research Group, School of Engineering of Bilbao, Building II-I, University of the Basque Country (UPV/EHU), Rafael Moreno Pitxitxi 3, 48013 Bilbao, Spain
| | - Laura Alonso
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Nora Aranburu
- POLYMAT and Department of Polymer and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Gonzalo Guerrica-Echevarría
- POLYMAT and Department of Polymer and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Amaia Orbea
- CBET Research Group, Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, 48940 Leioa, Spain
| | - Maider Iturrondobeitia
- eMERG Research Group, School of Engineering of Bilbao, Building II-I, University of the Basque Country (UPV/EHU), Rafael Moreno Pitxitxi 3, 48013 Bilbao, Spain
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
- Correspondence: ; Tel.: +34-946014311
| |
Collapse
|
10
|
Puszka A, Podkościelna B. Special Issue: Synthesis, Processing, Structure and Properties of Polymer Materials. Polymers (Basel) 2022; 14:4550. [PMID: 36365544 PMCID: PMC9658594 DOI: 10.3390/polym14214550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Polymeric materials are widely used in many different technical fields [...].
Collapse
Affiliation(s)
- Andrzej Puszka
- Department of Polymer Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland
| | - Beata Podkościelna
- Department of Polymer Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland
| |
Collapse
|