1
|
Abutalebi A, Christopher GF. Creating High Yield Stress Particle-Laden Oil/Water Interfaces Using Charge Bidispersity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21086-21096. [PMID: 39325636 DOI: 10.1021/acs.langmuir.4c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Interfacial engineering has been increasingly used to stabilize Pickering emulsions in commercial products and biomedical applications. Pickering emulsion stabilization is aided by interfacial viscoelasticity; however, typically the primary means of stabilization are steric hindrances between high surface concentration shells of particles around the drops. In this work, the concept of creating large interfacial viscoelastic yield stresses with low particle surface concentrations (<50%) using bidisperse charged particle systems is tested to evaluate their potential efficacy in emulsion stabilization. To explore this hypothesis, interfacial rheology and visualization experiments are conducted at o/w interfaces using positively charged amidine, negatively charged carboxylate, and negatively charged sulfate-coated latex spheres and compared to a model based on interparticle forces. Bidisperse particle systems have been observed to create more networked structures than monodisperse systems. For surface concentrations of <50%, bidisperse interfaces created measurable viscoelastic moduli ∼1 order of magnitude larger than monodisperse interfaces. Furthermore, these interfaces have measurable yield stresses on the order of 10-4 Pa·m when monodisperse systems have none. Bidispersity impacts surface viscoelasticity primarily by increasing the overall magnitude of attraction between particles at the interface and not due to changes in the microstructure. The developed model predicts the relative surface fraction that creates the largest moduli and shows good agreement with the experimental data. The results demonstrate the ability to create large viscoelastic moduli for small surface fractions of particles, which may enable stabilization using fewer particles in future applications.
Collapse
Affiliation(s)
- Arsalan Abutalebi
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Gordon F Christopher
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
2
|
Zbonikowski R, Iwan M, Paczesny J. Stimuli-Responsive Langmuir Films Composed of Nanoparticles Decorated with Poly( N-isopropyl acrylamide) (PNIPAM) at the Air/Water Interface. ACS OMEGA 2023; 8:23706-23719. [PMID: 37426285 PMCID: PMC10323952 DOI: 10.1021/acsomega.3c01862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
The nanotechnology shift from static toward stimuli-responsive systems is gaining momentum. We study adaptive and responsive Langmuir films at the air/water interface to facilitate the creation of two-dimensional (2D) complex systems. We verify the possibility of controlling the assembly of relatively large entities, i.e., nanoparticles with diameter around 90 nm, by inducing conformational changes within an about 5 nm poly(N-isopropyl acrylamide) (PNIPAM) capping layer. The system performs reversible switching between uniform and nonuniform states. The densely packed and uniform state is observed at a higher temperature, i.e., opposite to most phase transitions, where more ordered phases appear at lower temperatures. The induced nanoparticles' conformational changes result in different properties of the interfacial monolayer, including various types of aggregation. The analysis of surface pressure at different temperatures and upon temperature changes, surface potential measurements, surface rheology experiments, Brewster angle microscopy (BAM), and scanning electron microscopy (SEM) observations are accompanied by calculations to discuss the principles of the nanoparticles' self-assembly. Those findings provide guidelines for designing other adaptive 2D systems, such as programable membranes or optical interfacial devices.
Collapse
|
3
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
4
|
Abstract
The manufacturing of stable emulsion is a very important challenge for the cosmetic industry, which has motivated intense research activity for replacing conventional molecular stabilizers with colloidal particles. These allow minimizing the hazards and risks associated with the use of conventional molecular stabilizers, providing enhanced stability to the obtained dispersions. Therefore, particle-stabilized emulsions (Pickering emulsions) present many advantages with respect to conventional ones, and hence, their commercialization may open new avenues for cosmetic formulators. This makes further efforts to optimize the fabrication procedures of Pickering emulsions, as well as the development of their applicability in the fabrication of different cosmetic formulations, necessary. This review tries to provide an updated perspective that can help the cosmetic industry in the exploitation of Pickering emulsions as a tool for designing new cosmetic products, especially creams for topical applications.
Collapse
|