1
|
Sarkhel S, Mondal M, Datta D, Sahoo B, Kumari A, Saha S, Bera S, Jana M, Tiwari A, Roy A. Ultrasonic high-yield extraction of non-toxic fucose-containing Abroma augusta polysaccharide bearing emulsifying properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8858-8868. [PMID: 38988267 DOI: 10.1002/jsfa.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The stem of Abroma augusta contains mucilaginous polysaccharides having numerous ethnomedicinal properties. The present work aimed to develop a scalable ultrasonic-assisted aqueous Abroma augusta mucilage (AAM) extraction (UAE) method and further explores its emulsifying property and toxicity concern. RESULTS The combination of ultrasonic power (750 W), solid-to-liquid ratio (1:15) and temperature (348 K) gave the highest extraction yield of 2.28% with a diffusivity value of 3.85 × 10-9 m2 s-1, which was higher than aqueous extraction method using a kinetic model based on Fick's second law of diffusion. The extracted polysaccharide showed no toxicity as measured through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay on RAW cell line. Additionally, the polysaccharide over its critical micelle concentration (400, 500, 600 and 700 μg mL-1) offered emulsifying properties with 0.5%, 1% and 5% oil (v/v). The emulsion with a polysaccharide concentration of 600 μg mL-1 with 5% oil (v/v) provides stability against coalescence for 3 days. CONCLUSION The overall findings indicated that UAE of AAM polysaccharide can be used for an efficient extraction method, and the obtained polysaccharide is nontoxic in nature and bears emulsifying properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Mrinmoy Mondal
- Membrane Science and Separation Technology Division, GB Marg, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Deepanwita Datta
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Sandipan Bera
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Amit Tiwari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| |
Collapse
|
2
|
Chaudhary S, Kour M, Kumar R. Bioplastic films from starch of Colocasia esculenta and its waste: A smart template for sensing applications. Int J Biol Macromol 2024; 281:136218. [PMID: 39362432 DOI: 10.1016/j.ijbiomac.2024.136218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The over usage plastics have possessed serious threat to the ecological system. Thus progressive advancement in fabricating biodegradable and renewable bioplastics is persuasively required to furnish an effective alternative to non-biodegradable plastics. In this view, the current work highlights the production of starch based bioplastic films using waste Colocasia esculenta (taro herb) as a viable starting precursor. The functional ability of developed taro starch based film was further modified by incorporating carbon dots (CQDs) fillers generated from the waste slurry produced during starch extraction from taro herbs. The optimization of films production was achieved by varying the CQDs amount (0.4 %, 0.8 %, 2 % and 4 % w/w) on taro-based films using casting technology. The data illustrates that the addition of CQDs has the ability to enhance the fluorescence property, mechanical properties (Tensile Strength 0.332-4.635 MPa, Elongation at break 42.45-547.63 %) and water resistance ability of films (Moisture content 15-6.4 %, Water Solubility 50-30 % Water Vapour Transmission Rate 2.0012-1.0054 g-2 h-1 and Water Contact Angle 40.6-89.6°). The developed films are found to be thermally stable. The formed films possessed anti-oxidative abilities which safeguard the film from oxidative attacks and ultimately protect the film from the external environment. The fluorescence nanosensor probe has further been developed by utilizing CQDs embedded in a starch-based bioplastic nanocomposite. The developed sensor displayed selective sensing ability towards Fe2+ ion with high sensitivity and accuracy in aqueous medium. Thus, the proposed sensor in this work offers a portable, efficient, low-cost, disposable, non-lethal, and eco-friendly nanosensor for on-site monitoring of metal ion for the food, beverage, and pharmaceutical industries. This is one of the primary reports where metal ions sensing is reported for Taro@CQDs nanocomposites based films. Our outcomes of this work hold significant relevance to providing a smart sensory and biodegradable probe for metal ion sensing by using waste resources, thus offering a better and sustainable alternative for environmental remediation applications.
Collapse
Affiliation(s)
- Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Manmeet Kour
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| |
Collapse
|
3
|
Rayees R, Gani A, Gani A, Muzzaffar S. Water chestnut starch nanoparticle Pickering emulsion for enhanced apricot seed oil stability: A sustainable functionality approach. Int J Biol Macromol 2024; 282:137110. [PMID: 39486703 DOI: 10.1016/j.ijbiomac.2024.137110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The usage of starch nanoparticles for Pickering emulsion stabilization has become more popular for various benefits. This work investigated the potential of nano reduced starch as stabilizer in Pickering emulsions. Two different concentrations of starch nanoparticles (2.5 % and 5 %) were used for stabilization of apricot seed oil-in-water Pickering emulsion. Emulsion stabilized by 5 % starch nanoparticles (PE (5 %)) displayed zeta potential of -46.92 mV and emulsions stabilized by 2.5 % starch nanoparticles (PE (2.5 %)) exhibited zeta potential of -15.33 mV. In PE (2.5 %) after 24 h, creaming index (CI) was 12 %. CI remained zero in PE (5 %) after 30 days of storage period.PE (2.5 %) and apricot oil (AO) showed higher peroxide value than PE (5 %). Malondialdehyde (MDA) content of AO was 156.02 mmol/kg oil after 30 day storage period at 45 °C. Comparatively, PE (5 %) possessed lower MDA content (36.02 mmol/kg oil). The findings revealed that starch nanoparticles can be used as stabilizer in Pickering emulsions for stabilization and preventing lipid oxidation in polyunsaturated fatty acid rich oils. This study introduces a sustainable approach to enhance the stability of apricot seed oil using underutilized starch nanoparticles.
Collapse
Affiliation(s)
- Rahiya Rayees
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Asir Gani
- Department of Bioengineering & Food Technology, Shoolini University, Solan, Himachal Pradesh, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India.
| | - Sabeera Muzzaffar
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| |
Collapse
|
4
|
Priyanka S, S Karthick Raja Namasivayam, John F Kennedy, Meivelu Moovendhan. Starch-chitosan-Taro mucilage nanocomposite active food packaging film doped with zinc oxide nanoparticles - Fabrication, mechanical properties, anti-bacterial activity and eco toxicity assessment. Int J Biol Macromol 2024; 277:134319. [PMID: 39097046 DOI: 10.1016/j.ijbiomac.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
In this research, a novel active food packaging material was developed by blending starch, chitosan, and plant-based mucilage with zinc oxide nanoparticles. The polymeric nanocomposite film, created by incorporating zinc oxide nanoparticles into the mixture using a straightforward approach, was analyzed for its structural and functional attributes using FTIR, XRD, SEM, and TGA/DSC. These analyses revealed a robust interaction between the polymers' functional groups and the nanoparticles, forming a stable film. The film's mechanical properties, including tensile strength and Young's modulus, were high. It also showed reduced wettability and water solubility, enhancing water resistance. The biodegradability rate was 100 %. Antibacterial tests against Bacillus sp. and Pseudomonas sp. showed significant inhibition zones of 26 mm and 30 mm, respectively, demonstrating strong antibacterial effectiveness. The film's non-target toxicity was assessed through phytotoxicity experiments on Vigna angularis and soil nutrient evaluations, with no negative impact on plant growth or soil health observed. These results indicate that this nanocomposite is a safe, biocompatible option for food packaging.
Collapse
Affiliation(s)
- S Priyanka
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - John F Kennedy
- Chembiotech Ltd, Institute of Research and Development, Kyrewood House, Worcestershire WR15 8FF, UK
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
5
|
Rownaghi M, Niakousari M. Assessing physicochemical characteristics of a shear-thinning polysaccharide mucilage extracted from marshmallow root (Althaea officinalis L.) by an ohmic heating system. Int J Biol Macromol 2024; 277:134274. [PMID: 39094881 DOI: 10.1016/j.ijbiomac.2024.134274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Althaea officinalis L. root mucilage holds promise for food industries due to its functional properties. Despite various extraction techniques, ohmic systems remain underexplored for mucilage extraction. This study aimed to compare the efficacy of mucilage extraction using ohmic systems with maceration and investigate their physicochemical properties. The mucilage extraction was carried out utilizing maceration (M), ohmic-assisted extraction (OAE), and ohmic-assisted vacuum extraction (OAVE). Various parameters were evaluated, such as densities and specific energy consumption. The mucilage obtained by OAE had the highest yield (8.9 %). The highest solubility corresponded to the mucilage obtained by the OAE system (85.18 % at 65 °C). OAVE mucilage had 76.16 % swelling and 82.5 g water/g dry sample binding capacity, while OAE mucilage had 19.6 g water/g dry sample binding capacity. The OAVE mucilage oil absorption (12.3 g oil/g dry sample) was almost twice that of the OAE system. Rheological analysis characterized them as a pseudoplastic behavior. DSC thermogram of mucilage samples exhibited a singular endothermic peak (92.05 to 108.3 °C). FTIR analysis highlighted that the primary constituents of mucilage samples predominantly consisted of polysaccharides. This study concluded that ohmic-assisted extraction was the most efficient method for obtaining mucilage. Further research could explore the potential applications of this mucilage.
Collapse
Affiliation(s)
- Marzieh Rownaghi
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehrdad Niakousari
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Fagan RJ, Eskildsen D, Catanzano T, Stanietzky R, Kamel S, Elsayes KM. Burnout and the role of mentorship for radiology trainees and early career radiologists. Diagn Interv Radiol 2024; 30:313-317. [PMID: 38836503 PMCID: PMC11590732 DOI: 10.4274/dir.2024.242825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 06/06/2024]
Abstract
Burnout is a widespread issue among physicians, including radiologists and radiology trainees. Long hours, isolation, and substantial stress levels contribute to healthcare workers experiencing a substantially higher rate of burnout compared with other professionals. Resident physicians, continuously exposed to stressors such as new clinical situations and performance feedback, are particularly susceptible. Mentorship has proven to be an effective strategy in mitigating burnout. Various mentorship delivery models exist, all aiming to have mentors serve as role models to mentees, thereby alleviating stress and anxiety. Physician groups and healthcare enterprises have actively implemented these programs, recognizing them as both successful and cost-effective. This article explores different mentorship models, their implementation processes, and the effectiveness of these programs as a standard component of academic departments.
Collapse
Affiliation(s)
- Richard J Fagan
- Baylor College of Medicine, Department of Radiology, Texas, United States of America
| | - Dane Eskildsen
- Baylor College of Medicine, Department of Radiology, Texas, United States of America
| | - Tara Catanzano
- University of Massachusetts Medical School- Baystate, Department of Radiology, UMass Chan-Baystate, Springfield, United States of America
| | - Rachel Stanietzky
- University of Texas MD Anderson Cancer Center, Department of Abdominal Imaging, Texas, United States of America
| | - Serageldin Kamel
- University of Texas MD Anderson Cancer Center, Department of Abdominal Imaging, Texas, United States of America
| | - Khaled M. Elsayes
- University of Texas MD Anderson Cancer Center, Department of Abdominal Imaging, Texas, United States of America
| |
Collapse
|
7
|
Saxby SM, Dong L, Ho KKHY, Lee CN, Wall M, Li Y. Nutritional, physicochemical, and functional properties of Hawaiian taro (Colocasia esculenta) flours: A comparative study. J Food Sci 2024; 89:2629-2644. [PMID: 38578118 DOI: 10.1111/1750-3841.17053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Taro (Colocasia esculenta) flour is a viable carbohydrate alternative and a functional additive for food formulation; however, different taro varieties may possess distinct characteristics that may influence their suitability for food production. This study evaluated the nutritional, physicochemical, and functional properties of flours from five Hawaiian taro varieties: Bun-Long, Mana Ulu, Moi, Kaua'i Lehua, and Tahitian. Tahitian, Bun-long, and Moi had high total starch contents of 40.8, 38.9, and 34.1 g/100 g, respectively. Additionally, Moi had the highest neutral detergent fiber (25.5 g/100 g), lignin (1.39 g/100 g), and cellulose (5.31 g/100 g). In terms of physicochemical properties, Tahitian showed the highest water solubility index (33.3 g/100 g), while Tahitian and Moi exhibited the two highest water absorption indices (5.81 g/g and 5.68 g/g, respectively). Regarding functional properties, Tahitian had the highest water absorption capacity (3.48 g/g), and Tahitian and Moi had the two highest oil absorption capacities (3.15 g/g and 2.68 g/g, respectively). Therefore, the flours from these Hawaiian taro varieties possess promising characteristics that could enhance food quality when used as alternative additives in food processing.
Collapse
Affiliation(s)
- Solange M Saxby
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
- Community and Family Medicine Department, Dartmouth Health, Lebanon, New Hampshire, USA
| | - Lianger Dong
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
- School of Life Sciences, Shanghai University, Baoshan, Shanghai, China
| | - Kacie K H Y Ho
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Chin N Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Marisa Wall
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii, USA
| | - Yong Li
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
8
|
Tosif MM, Bains A, Sridhar K, Inbaraj BS, Ali N, Dikkala PK, Kumar A, Chawla P, Sharma M. Fabrication and Characterization of Taro ( Colocasia esculenta)-Mucilage-Based Nanohydrogel for Shelf-Life Extension of Fresh-Cut Apples. Gels 2024; 10:95. [PMID: 38391425 PMCID: PMC10888338 DOI: 10.3390/gels10020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Taro mucilage is a cost-effective, eco-friendly, and water-soluble edible viscous polysaccharide, which possesses diverse techno-functional properties including gelling and anti-microbial. Therefore, the objective of this study was to formulate and evaluate the efficacy of taro mucilage nanohydrogel for the shelf-life enhancement of fresh-cut apples. Taro mucilage was extracted using cold water extraction, and the yield of mucilage was found to be 2.95 ± 0.35% on a dry basis. Different concentrations of mucilage (1, 2, 3, 4, and 5%) were used to formulate the nanohydrogel. A smaller droplet size of 175.61 ± 0.92 nm was observed at 3% mucilage, with a zeta potential of -30.25 ± 0.94 mV. Moreover, FTIR data of nanohydrogel revealed the functional groups of various sugars, uronic acids, and proteins. Thermal analysis of nanohydrogel exhibited weight loss in three phases, and maximum weight loss occurred from 110.25 °C to 324.27 °C (65.16%). Nanohydrogel showed shear-thinning fluid or pseudo-plastic behavior. Coating treatment of nanohydrogel significantly reduced the weight loss of fresh-cut apples (8.72 ± 0.46%) as compared to the control sample (12.25 ± 0.78%) on the 10th day. In addition, minor changes were observed in the pH for both samples during the 10 days of storage. Titrable acidity of control fresh-cut apples measured 0.22 ± 0.05% on day 0, rising to 0.42 ± 0.03% on the 10th day, and for coated fresh-cut apples, it was observed to be 0.24 ± 0.07% on the 0th day and 0.36 ± 0.06% on 10th day, respectively. Furthermore, the total soluble solids (TSS) content of both control and coated fresh-cut apples measured on the 0th day was 11.85 ± 0.65% and 12.33 ± 0.92%, respectively. On the 10th day, these values were significantly increased (p < 0.05) to 16.38 ± 0.42% for the control and 14.26 ± 0.39% for the coated sliced apples, respectively. Nanohydrogel-coated fresh-cut apples retained antioxidant activity and vitamin C content as compared to the control sample. Taro mucilage nanohydrogel-based edible coating showed distinct anti-microbial activity against psychrotrophic, aerobic, and yeast molds. In summary, taro mucilage nanohydrogel can be used as a cost-effective natural coating material for the shelf-life enhancement or freshness maintenance of fresh-cut apples.
Collapse
Affiliation(s)
- Mansuri M Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | | | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Praveen Kumar Dikkala
- College of Food Science and Technology, Acharya NG Ranga Agricultural University, Pulivendula 516390, India
| | - Ankur Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India
| |
Collapse
|
9
|
Syan V, Kaur J, Sharma K, Patni M, Rasane P, Singh J, Bhadariya V. An overview on the types, applications and health implications of fat replacers. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:27-38. [PMID: 38192702 PMCID: PMC10771406 DOI: 10.1007/s13197-022-05642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Driven by the demand of consumers for low-fat foods, the field of fat replacers has made a tremendous breakthrough over the past decade. A fat replacer is a substance that replaces whole or part of the fat in food while asserting the same physiological properties. Based on the source, fat replacers can be carbohydrate, protein or lipid-based. They serve two major purposes in food viz. reducing the calorie content and amount of fat used in the preparation of food products as well as impart fat-like properties. Fat replacers exhibit its functionalities by providing texture, acting as stabilizers, emulsifiers, gelling and thickening agents. It is crucial to select the proper kind of fat replacer because fat functionality varies considerably depending on the meal type and the formulation. Evidence suggests that reducing fat intake can help in controlling body weight and the risk of diseases like type-2 diabetes, hypertension and cardiovascular disease. Consumers should not be misled into believing that fat and calorie-reduced foods may be consumed indefinitely. Fat replacers are most beneficial when they aid in calorie control and promote the consumption of meals that provide essential nutrients. This review aims to provide a deep insight into the fact that fat replacers can be utilized in various food commodities in order to meet the dietary guidelines for reducing fat intake with a healthy lifestyle and prudent dietary approach.
Collapse
Affiliation(s)
- Vanshika Syan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Kartik Sharma
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110 Songkla Thailand
| | - Manvi Patni
- Department of Nutrition, BD Arya Girls College, Jalandhar, Punjab India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 USA
| |
Collapse
|
10
|
Tosif MM, Bains A, Goksen G, Ali N, Rusu AV, Trif M, Chawla P. Application of Taro ( Colocasia esculenta) Mucilage as a Promising Antimicrobial Agent to Extend the Shelf Life of Fresh-Cut Brinjals (Eggplants). Gels 2023; 9:904. [PMID: 37998994 PMCID: PMC10670827 DOI: 10.3390/gels9110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Taro rhizomes are a rich source of polysaccharides, including starch and mucilage. However, mucilage has excellent anti-microbial efficacy, and unique gel-forming and techno-functional properties. Therefore, this study aimed to extract and utilize taro mucilage (TM), which is viscous and has a gel-like texture, for the shelf-life enhancement of fresh-cut brinjals (eggplants). Mucilage was extracted using hot-water extraction and the yield was calculated to be 6.25 ± 0.87% on a dry basis. Different formulations of coating gel solutions were prepared: 1, 2, 3, 4, 5, 6, and 7%. The selection of the coating gel solution was carried out based on particle size. The smallest particle size was observed in treatment T5 (154 ± 0.81 nm) and zeta potential -27.22 ± 0.75 mV. Furthermore, cut brinjals were coated with the prepared mucilage gel solution and this showed a significant effect on the overall physicochemical properties of cut brinjals. Maximum weight loss occurred on the 10th day (12.67 ± 0.24%), as compared with coated brinjals (8.99 ± 0.42%). Minor changes were observed in pH, for the control sample significantly decreased from 4.58 ± 0.45 to 2.99 ± 0.75 on the 0th day to the 10th day, respectively. Titrable acidity of coated and uncoated cut brinjals was found to be at 0.31 ± 0.44% on the 0th day, which increased up to 0.66 ± 0.20% for the control and 0.55 ± 0.68% for coated brinjals on the 10th day. The taro mucilage coating gel (TMCG) solution showed pseudo-plastic behavior or shear-thinning fluid behavior. FTIR data confirmed the existence of several functional groups including various sugars, proteins, and hydroxylic groups. Antioxidant activity of coated and uncoated cut brinjals was found to be 22.33 ± 0.37% and 22.15 ± 0.49%, respectively. The TMCG solution showed effective results towards the various food pathogenic microorganisms. Overall, it is a natural, renewable resource that is biodegradable. This makes it an environmentally friendly alternative to synthetic additives or thickeners. It is cost effective, easily available, eco-friendly, and non-toxic. This can be an attractive feature for consumers looking for sustainable and eco-friendly options.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| |
Collapse
|
11
|
Ferdaus MJ, Chukwu-Munsen E, Foguel A, da Silva RC. Taro Roots: An Underexploited Root Crop. Nutrients 2023; 15:3337. [PMID: 37571276 PMCID: PMC10421445 DOI: 10.3390/nu15153337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Taro (Colocasia esculenta) is a root crop that remains largely underutilized and undervalued despite its abundance and affordability. In comparison to other root vegetables, such as potatoes, yams, carrots, and cassava, taro stands out as a plentiful and low-cost option. As global hunger increases, particularly in Africa, it becomes essential to address food insecurity by maximizing the potential of existing food resources, including taro, and developing improved food products derived from it. Taro possesses a wealth of carbohydrates, dietary fiber, vitamins, and minerals, thereby making it a valuable nutritional source. Additionally, while not a significant protein source, taro exhibits higher protein content than many other root crops. Consequently, utilizing taro to create food products, such as plant-based milk alternatives, frozen desserts, and yogurt substitutes, could play a crucial role in raising awareness and increasing taro production. Unfortunately, taro has been stigmatized in various cultures, which has led to its neglect as a food crop. Therefore, this review aims to highlight the substantial potential of taro as an economical source of dietary energy by exploring the rich fiber, potassium, vitamin C, protein, and other micronutrient content of taro, and providing a foundation for the formulation of novel food products. Furthermore, this paper assesses the nutritional benefits of taro, its current utilization, and its antinutritional properties. It emphasizes the need for further research to explore the various applications of taro and improve on-farm processing conditions for industrial purposes.
Collapse
Affiliation(s)
- Md. Jannatul Ferdaus
- Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Ezzine Chukwu-Munsen
- Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aline Foguel
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Roberta Claro da Silva
- Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
12
|
Yang Y, Gupta VK, Du Y, Aghbashlo M, Show PL, Pan J, Tabatabaei M, Rajaei A. Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review. Int J Biol Macromol 2023; 242:124800. [PMID: 37178880 DOI: 10.1016/j.ijbiomac.2023.124800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/08/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.
Collapse
Affiliation(s)
- Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Yating Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
13
|
López-Díaz AS, Méndez-Lagunas LL. Mucilage-Based Films for Food Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- A. S. López-Díaz
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Santa Cruz Xoxocotlán, Oaxaca, México
| | - L. L. Méndez-Lagunas
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Santa Cruz Xoxocotlán, Oaxaca, México
| |
Collapse
|
14
|
Akhone MA, Bains A, Tosif MM, Chawla P, Fogarasi M, Fogarasi S. Apricot Kernel: Bioactivity, Characterization, Applications, and Health Attributes. Foods 2022; 11:foods11152184. [PMID: 35892769 PMCID: PMC9332734 DOI: 10.3390/foods11152184] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Apricot kernel, a by-product of apricot fruit, is a rich source of proteins, vitamins, and carbohydrates. Moreover, it can be used for medicinal purposes and the formation of food ingredients. Several techniques have been adopted for the extraction of bioactive compounds from the apricot kernel such as solvent extraction, ultra-sonication, enzyme-assisted, microwave-assisted, and aqueous extraction. Apricot kernels may help to fight against various diseases such as cancer and cancer immunotherapy, as well as reduce blood pressure. Additionally, the kernel is famous due to its diverse industrial applications in various industries and fields of research such as thermal energy storage, the cosmetic industry, the pharmaceutical industry, and the food industry. Especially in the food industry, the apricot kernel can be used in the preparation of low-fat biscuits, cookies, cakes, and the fabrication of antimicrobial films. Therefore, in this review article, the bioactivity of the apricot kernel is discussed along with its chemical or nutritional composition, characterizations, and applications.
Collapse
Affiliation(s)
- Mansoor Ali Akhone
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India; (M.A.A.); (M.M.T.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India; (M.A.A.); (M.M.T.)
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India; (M.A.A.); (M.M.T.)
- Correspondence: (P.C.); (M.F.)
| | - Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania
- Correspondence: (P.C.); (M.F.)
| | - Szabolcs Fogarasi
- Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Oh S, Kim DY. Characterization, Antioxidant Activities, and Functional Properties of Mucilage Extracted from Corchorus olitorius L. Polymers (Basel) 2022; 14:polym14122488. [PMID: 35746064 PMCID: PMC9228403 DOI: 10.3390/polym14122488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
This study extracted the mucilage from Corchorus olitorius L. to observe its chemical and functional properties and suggest its possible applications in various fields. Corchorus olitorius L. mucilage was isolated by hot water extraction. FT-IR and HPAEC-PAD were used to describe the chemical composition, and the functional properties and antioxidant activities of the mucilage were also examined. The mucilage was mainly composed of uronic acid (34.24%, w/w). The solubility was 79.48 ± 1.08% at 65 °C, the swelling index was 29.01 ± 2.54% at 25 °C, and the water-holding capacity and oil-binding capacity were 28.66 ± 1.48 and 8.423 ± 0.23 g/g, respectively. The mucilage viscosity increased from 4.38 to 154.97 cP in a concentration-dependent manner. Increasing the concentration decreased the emulsion activity and increased the emulsion stability, most likely because of the corresponding increase in surface tension and viscosity. Results from antioxidant assays confirmed that the in-vitro radical scavenging activity of the mucilage increased with concentration. This study shows that C. olitorius L. can be utilized as a new hydrocolloid source, with potential applications in fields ranging from foods to cosmetics and pharmaceuticals.
Collapse
|