1
|
Gohar S, Iqbal Z, Nasir F, Khattak MA, E Maryam G, Pervez S, Alasmari F, Neau SH, Zainab SR, Ali AT, Ur Rahman A. Self-assembled latanoprost loaded soluplus nanomicelles as an ophthalmic drug delivery system for the management of glaucoma. Sci Rep 2024; 14:27051. [PMID: 39511270 DOI: 10.1038/s41598-024-78244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Glaucoma, a leading cause of blindness due to elevated intraocular pressure (IOP), is managed with medications like latanoprost (LAT), a prostaglandin analogue, to enhance aqueous outflow. Despite the challenge posed by eye anatomy and tear dynamics, effective ocular bioavailability via topical administration remains elusive. This study aims to optimize self-assembled nanomicelles incorporating LAT, an anti-glaucoma drug, belonging to BCS Class II (low solubility and high permeability) via a two-level, two-factor full factorial design, the nanomicelles were formulated via direct dissolution method and validated using design of expert. The optimized nanomicelles exhibited a spherical morphology, with a size of 69 nm and encapsulation efficiency of 77.5%, demonstrating a sustained LAT release over 12 h. In normotensive rabbits, the nanomicelles elicited a substantial reduction in intraocular pressure (IOP) by up to 40% for a duration of three days, that was significantly longer than the IOP-lowering efficacy of XALATAN eye drops (24 h). These findings indicated that self-assembled nanomicelles hold promise for enhancing the ocular bioavailability and extending the therapeutic duration of LAT, while providing the physical stability.
Collapse
Affiliation(s)
- Shazma Gohar
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan
| | - Zafar Iqbal
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan.
| | - Muzna Ali Khattak
- Department of Pharmacy, CECOS University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Gul E Maryam
- Department of Pharmacy, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - Sadia Pervez
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Steven H Neau
- Philadelphia College of Pharmacy, University of Sciences, Philadelphia, PA, USA
| | - Syeda Rabqa Zainab
- Department of Pharmacy, City University of Science and Information Technology, Peshawar, Pakistan
| | - Arbab Tahir Ali
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan
| | - Altaf Ur Rahman
- Department of Pharmacy, University of Peshawar, Peshawar, 25000, Pakistan
| |
Collapse
|
2
|
Zhao T, Gu C, Qi J, Liu J, Wang Y, Chen X, Guo F, Li Y. In vitro and in vivo performance of amorphous solid dispersions of ursolic acid as a function of polymer type and excipient addition. J Pharm Pharmacol 2024:rgae125. [PMID: 39393786 DOI: 10.1093/jpp/rgae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/14/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES The objective of this research was to enhance the bioavailability of ursolic acid (UA) by preparing multielement amorphous solid dispersion (ASD) systems comprising excipients. METHODS The ASDs were prepared via the solvent evaporation method, characterized by a range of techniques, and investigated with respect to permeability of human colorectal adenocarcinoma cell line (Caco-2) cells monolayers and pharmacokinetics, with comparisons made to the physical mixture and the pure drug. KEY FINDINGS The (UA-choline)-Polyethylcaprolactam-polyvinyl acetate-polyethylene glycol grafted copolymer (Soluplus)-Vitamin E polyethylene glycol succinate (TPGS) ASD demonstrated superior dissolution properties compared to the corresponding binary solid dispersions and ternary solid dispersions (P < .05). The permeability studies of Caco-2 cell monolayers revealed that the ASD exhibited moderate permeability, with an efflux rate that was significantly lower than that of the UA raw material (P < .05). Pharmacokinetic studies in rats demonstrated that the oral bioavailability of the ASD was 19.0 times higher than that of UA (P < .01). CONCLUSIONS The research indicated that the multielement ASD could be employed as an efficacious drug delivery system for UA. Furthermore, the Soluplus/TPGS/choline combination represents a promising candidate for the fabrication of ASDs that can load weakly acidic and poorly soluble drugs.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, 369 Tianxiong Road, Shanghai 201318, People's Republic of China
| | - Chenming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Jianbo Qi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yajun Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, 369 Tianxiong Road, Shanghai 201318, People's Republic of China
| | - Xiaojing Chen
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, 369 Tianxiong Road, Shanghai 201318, People's Republic of China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
3
|
Tong Z, Liu X, Tao Y, Feng P, Luan F, Jie X, Xie Z, Pu F, Xu Z, Wang P. Enhancement of dissolution and oral bioavailability by adjusting microenvironment pH in crocetin ternary solid dispersions: Optimization, characterization, in vitro evaluation, and pharmacokinetics. Drug Deliv Transl Res 2024; 14:1923-1939. [PMID: 38117406 DOI: 10.1007/s13346-023-01497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
The most promising active ingredient of Crocus sativus L., crocetin (CCT), has been demonstrated to possess many biological activities. However, only a few studies have been conducted on CCT formulation, especially in oral formulation, mainly due to its insolubility in water, which limits its application for oral administration. This article reports an equilibrium saturation solubility and single-pass intestinal perfusion studies conducted to classify the biopharmaceutics classification system (BCS) of CCT. To enhance in vitro dissolution and in vivo oral bioavailability, ternary solid dispersions of CCT (CCT-SDs) with soluplus (SOL) as hydrophilic carrier and meglumine (MEG) as alkalizer were optimized using response surface methodology (RSM) with central composite design (CCD) experiments. Four different preparation methods were evaluated using the optimal formulation, including solvent evaporation, ball milling, spray drying, and freeze-drying. Prepared formulations were characterized by TG-DSC, FTIR, X-RPD, and SEM; the pharmacokinetic studies were performed in rats after oral administration. The cumulative dissolution rate of CCT-SDs containing SOL and MEG prepared by the ball milling method was 97.1% at 15 min and remained at 95.6% at 480 min, which was significantly higher than that of untreated CCT. The lower crystallinity, smaller particle size, and higher microenvironment pH (pHM) were observed in CCT-SDs prepared by the ball milling method. In vivo absorption of CCT-SDs (Cmax = 52.789 ± 12.441 μg/mL and AUC0-12 = 191.748 ± 35.043 μg/mL·h) was greater than untreated CCT (Cmax = 5.918 ± 1.388 μg/mL and AUC0-12 = 44.309 ± 7.264 μg/mL·h). In conclusion, the current study provides ternary solid dispersion formulation of CCT to increase the in vitro dissolution and in vivo bioavailability, which will benefit the commercial production and future clinical applications of CCT.
Collapse
Affiliation(s)
- Zheren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xianyin Liu
- College of Pharmaceutical Sciences, Jiangxi Medical College, Shangrao, 334000, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fujia Luan
- College of Pharmaceutical Sciences, Jiangxi Medical College, Shangrao, 334000, China
| | - Xiaolu Jie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhangfu Xie
- Zhejiang Suichang Liming Pharmaceutical Co., LTD, Suichang, 323300, China
| | - Faxiang Pu
- Zhejiang Suichang Liming Pharmaceutical Co., LTD, Suichang, 323300, China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Jiangxi Medical College, Shangrao, 334000, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Rosiak N, Tykarska E, Cielecka-Piontek J. Enhanced Antioxidant and Neuroprotective Properties of Pterostilbene (Resveratrol Derivative) in Amorphous Solid Dispersions. Int J Mol Sci 2024; 25:2774. [PMID: 38474022 DOI: 10.3390/ijms25052774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, amorphous solid dispersions (ASDs) of pterostilbene (PTR) with polyvinylpyrrolidone polymers (PVP K30 and VA64) were prepared through milling, affirming the amorphous dispersion of PTR via X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Subsequent analysis of DSC thermograms, augmented using mathematical equations such as the Gordon-Taylor and Couchman-Karasz equations, facilitated the determination of predicted values for glass transition (Tg), PTR's miscibility with PVP, and the strength of PTR's interaction with the polymers. Fourier-transform infrared (FTIR) analysis validated interactions maintaining PTR's amorphous state and identified involved functional groups, namely, the 4'-OH and/or -CH groups of PTR and the C=O group of PVP. The study culminated in evaluating the impact of amorphization on water solubility, the release profile in pH 6.8, and in vitro permeability (PAMPA-GIT and BBB methods). In addition, it was determined how improving water solubility affects the increase in antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays) and neuroprotective (inhibition of cholinesterases: AChE and BChE) properties. The apparent solubility of the pure PTR was ~4.0 µg·mL-1 and showed no activity in the considered assays. For obtained ASDs (PTR-PVP30/PTR-PVPVA64, respectively) improvements in apparent solubility (410.8 and 383.2 µg·mL-1), release profile, permeability, antioxidant properties (ABTS: IC50 = 52.37/52.99 μg·mL-1, DPPH: IC50 = 163.43/173.96 μg·mL-1, CUPRAC: IC0.5 = 122.27/129.59 μg·mL-1, FRAP: IC0.5 = 95.69/98.57 μg·mL-1), and neuroprotective effects (AChE: 39.1%/36.2%, BChE: 76.9%/73.2%) were confirmed.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| |
Collapse
|
5
|
Abdallah M, Mohamed AS, Tadros MI, El-Nabarawi M, Tawfik MA. Solusomes (novel soluplus ® enriched nano-vesicular carriers) for improving the oral bioavailability of Candesartan cilexetil. Pharm Dev Technol 2024; 29:13-24. [PMID: 38014703 DOI: 10.1080/10837450.2023.2289166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Candesartan cilexetil (CAN) is administered for treating hypertension and heart failure. CAN suffers poor oral bioavailability, owing to limited aqueous solubility, and first-pass metabolism. Solusomes (novel Soluplus® enriched nano-vesicular carriers) combine the merits of Soluplus®, and the traditional liposomes. They were explored to increase CAN solubility, allow a high drug release rate, and improve the oral drug bioavailability. Solusomes were developed via thin film hydration technique utilizing lipid (phosphatidylcholine; PC) and polymeric solubilizer (Soluplus®; Solu). S6 system comprising PC (0.1% w/v), CAN and Soluplus® (at 1:5 ratio; w/w), following a 5 min sonication period, was the optimum one with respect to drug entrapment efficiency (83.5 ± 2.6%), drug loading (11.9 ± 0.3%), particle size and shape (377.2 ± 12.1 nm, spherical), zeta-potential (-19.6 ± 2.1 mV), saturated drug solubility (32.09 ± 0.71 µg/mL), drug released % after 1 h (68 ± 0.9%), and stability. Significantly higher Cmax (969.12 ± 46.3 ng/mL), shorter median Tmax (1h), and improved relative bioavailability (≈ 6.8 folds) in rabbits could evidence the potential of S6 system in enhancing oral CAN bioavailability. S6 solusomes act as dual platform to improve the oral drug bioavailability and maintain effective drug concentration for a prolonged period.
Collapse
Affiliation(s)
- Mohammed Abdallah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Rosiak N, Tykarska E, Cielecka-Piontek J. The Study of Amorphous Kaempferol Dispersions Involving FT-IR Spectroscopy. Int J Mol Sci 2023; 24:17155. [PMID: 38138984 PMCID: PMC10742969 DOI: 10.3390/ijms242417155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Attenuated total reflection-Mid-Fourier transform-infrared (ATR-Mid-FT-IR) spectroscopy combined with principal component analysis (PCA) has been applied for the discrimination of amorphous solid dispersion (ASD) of kaempferol with different types of Eudragit (L100, L100-55, EPO). The ASD samples were prepared by ball milling. Training and test sets for PCA consisted of a pure compound, physical mixture, and incomplete/complete amorphous solid dispersion. The obtained results confirmed that the range 400-1700 cm-1 was the major contributor to the variance described by PC1 and PC2, which are the fingerprint region. The obtained PCA model selected fully amorphous samples as follows: five for KMP-EL100, two for KMP-EL100-55, and six for KMP-EPO (which was confirmed by the XRPD analysis). DSC analysis confirmed full miscibility of all ASDs (one glass transition temperature). FT-IR analysis confirmed the formation of hydrogen bonds between the -OH and/or -CH groups of KMP and the C=O group of Eudragits. Amorphization improved the solubility of kaempferol in pH 6.8, pH 5.5, and HCl 0.1 N.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
7
|
Chhimwal J, Dhritlahre RK, Anand P, Ruchika, Patial V, Saneja A, Padwad YS. Amorphous solid dispersion augments the bioavailability of phloretin and its therapeutic efficacy via targeting mTOR/SREBP-1c axis in NAFLD mice. BIOMATERIALS ADVANCES 2023; 154:213627. [PMID: 37748276 DOI: 10.1016/j.bioadv.2023.213627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
The escalating incidences of non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders are global health concerns. Phloretin (Ph) is a natural phenolic compound, that exhibits a wide array of pharmacological actions including its efficacy towards NAFLD. However, poor solubility and bioavailability of phloretin limits its clinical translation. Here, to address this concern we developed an amorphous solid dispersion of phloretin (Ph-SD) using Soluplus® as a polymer matrix. We further performed solid-state characterization through SEM, P-XRD, FT-IR, and TGA/DSC analysis. Phloretin content, encapsulation efficiency, and dissolution profile of the developed formulation were evaluated through reverse phase HPLC. Finally, the oral bioavailability of Ph-SD and its potential application in the treatment of experimental NAFLD mice was investigated. Results demonstrated that the developed formulation (Ph-PD) augments the dissolution profile and oral bioavailability of the native phloretin (Ph). In NAFLD mice, histopathological studies revealed the preventive effect of Ph-SD on degenerative changes, lipid accumulation, and inflammation in the liver. Ph-SD also improved the serum lipid profile, ALT, and AST levels and lowered the interleukin-6 and tumor necrosis factor-α levels in the liver. Further, Ph-SD reduced fibrotic changes in the liver tissues and attenuates NAFLD progression by blocking the mTOR/SREBP-1c pathway. In a nutshell, the results of our study strongly suggest that Ph-SD has the potential to be a therapeutic candidate in the treatment of NAFLD and can be carried forward for further clinical studies.
Collapse
Affiliation(s)
- Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rakesh Kumar Dhritlahre
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ruchika
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Rosiak N, Tykarska E, Cielecka-Piontek J. Amorphous Pterostilbene Delivery Systems Preparation-Innovative Approach to Preparation Optimization. Pharmaceutics 2023; 15:pharmaceutics15041231. [PMID: 37111715 PMCID: PMC10145601 DOI: 10.3390/pharmaceutics15041231] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of our research was to improve the solubility and antioxidant activity of pterostilbene (PTR) by developing a novel amorphous solid dispersion (ASD) with Soluplus® (SOL). DSC analysis and mathematical models were used to select the three appropriate PTR and SOL weight ratios. The amorphization process was carried out by a low-cost and green approach involving dry milling. An XRPD analysis confirmed the full amorphization of systems in 1:2 and 1:5 weight ratios. One glass transition (Tg) observed in DSC thermograms confirmed the complete miscibility of the systems. The mathematical models indicated strong heteronuclear interactions. SEM micrographs suggest dispersed PTR within the SOL matrix and a lack of PTR crystallinity, and showed that after the amorphization process, PTR-SOL systems had a smaller particle size and larger surface area compared with PTR and SOL. An FT-IR analysis confirmed that hydrogen bonds were responsible for stabilizing the amorphous dispersion. HPLC studies showed no decomposition of PTR after the milling process. PTR's apparent solubility and antioxidant activity after introduction into ASD increased compared to the pure compound. The amorphization process improved the apparent solubility by ~37-fold and ~28-fold for PTR-SOL, 1:2 and 1:5 w/w, respectively. The PTR-SOL 1:2 w/w system was preferred due to it having the best solubility and antioxidant activity (ABTS: IC50 of 56.389 ± 0.151 µg·mL-1 and CUPRAC: IC0.5 of 82.52 ± 0.88 µg·mL-1).
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| |
Collapse
|
9
|
Saha SK, Joshi A, Singh R, Jana S, Dubey K. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|