1
|
Cabello-Alvarado CJ, Andrade-Guel M, Pérez-Alvarez M, Cadenas-Pliego G, Bartolo-Pérez P, Martínez-Carrillo D, Quiñones-Jurado ZV. Green Flame-Retardant Blend Used to Improve the Antiflame Properties of Polypropylene. Polymers (Basel) 2024; 16:1317. [PMID: 38794510 PMCID: PMC11126108 DOI: 10.3390/polym16101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The flammability properties of polymers and polymeric composites play an important role in ensuring the safety of humans and the environment; moreover, flame-retardant materials ensure a greater number of applications. In the present study, we report the obtaining of polypropylene (PP) composites contain a mixture of two green flame retardants, lignin and clinoptilolite, by melt extrusion. These additives are abundantly found in nature. Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), mechanical properties, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), cone calorimetry, UL-94, and carbonized residues analysis were carried out. TGA analysis shows that PPGFR-10 and PPGFR-20 compounds presented better thermal stability with respect to PP without flame retardants. The conical calorimetric evaluation of the composites showed that PPGFR-10 and PPGFR-20 presented decreases in peak heat release rates (HRRs) of 9.75% and 11.88%, respectively. The flammability of the composites was evaluated with the UL-94 standard, and only the PPGFR-20 composite presented the V-0 and 5VB classification, which indicates good flame-retardant properties. Additives in the polymer matrix showed good dispersion with few agglomerates. The PPGFR-20 composite showed an FRI value of 1.15, higher percentage of carbonized residues, and UL-94 V-0 and 5VB rating, suggesting some kind of synergy between lignin and clinoptilolite, but only at high flame-retardant concentrations.
Collapse
Affiliation(s)
- Christian J. Cabello-Alvarado
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.J.C.-A.); (M.P.-A.)
- CONAHCYT—Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico
| | - Marlene Andrade-Guel
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.J.C.-A.); (M.P.-A.)
| | - Marissa Pérez-Alvarez
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.J.C.-A.); (M.P.-A.)
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico; (C.J.C.-A.); (M.P.-A.)
| | - Pascual Bartolo-Pérez
- Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Departamento de Física Aplicada, Mérida 97310, Yucatán, Mexico;
| | - Diego Martínez-Carrillo
- Centro de Investigación en Geociencias Aplicadas, Universidad Autónoma de Coahuila, Nueva Rosita 26830, Coahuila, Mexico;
| | - Zoe V. Quiñones-Jurado
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango 34120, Durango, Mexico;
| |
Collapse
|
2
|
Gallego-Cartagena E, Morillas H, Morgado-Gamero W, Fuentes-Gandara F, Vacca-Jimeno V, Salcedo I, Madariaga JM, Maguregui M. Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution. CHEMOSPHERE 2022; 309:136743. [PMID: 36209867 DOI: 10.1016/j.chemosphere.2022.136743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Over the last decades, the concern about air pollution has increased significantly, especially in urban areas. Active sampling of air pollutants requires specific instrumentation not always available in all the laboratories. Passive sampling has a lower cost than active alternatives but still requires efforts to cover extensive areas. The use of biological systems as passive samplers might be a solution that provides information about air pollution to assist decision-makers in environmental health and urban planning. This study aims to employ subaerial biofilms (SABs) growing naturally on façades of historical and recent constructions as natural passive biomonitors of atmospheric heavy metals pollution. Concretely, SABs spontaneously growing on constructions located in a tropical climate, like the one of the city of Barranquilla (Colombia), have been used to develop the methodological approach here presented as an alternative to SABS grown under laboratory conditions. After a proper identification of the biocolonizers in the SAB through taxonomic and morphological observations, the study of the particulate matter accumulated on the SABs of five constructions was conducted under a multi-analytical approach based mainly on elemental imaging studies by micro Energy Dispersive X-ray fluorescence spectrometry (μ-EDXRF) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectrometry (SEM-EDS) techniques, trying to reduce the time needed and associated costs. This methodology allowed to discriminate metals that are part of the original structure of the SABs, from those coming from the anthropogenic emissions. The whole methodology applied assisted the identification of the main metallic particles that could be associated with nearby anthropogenic sources of emission such as Zn, Fe, Mn, Ni and Ti by SEM-EDS and by μ-EDXRF Ba, Sb, Sn, Cl and Br apart others; revealing that it could be used as a good alternative for a rapid screening of the atmospheric heavy metals pollution.
Collapse
Affiliation(s)
- Euler Gallego-Cartagena
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain.
| | - Héctor Morillas
- Department of Didactic of Mathematics, Experimental and Social Sciences, Faculty of Education and Sport, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Basque Country, Spain
| | - Wendy Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia
| | - Fabio Fuentes-Gandara
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia
| | - Víctor Vacca-Jimeno
- Faculty of Basic Sciences, Universidad Del Atlántico, Km5 Vía Puerto Colombia, 081007, Atlántico, Colombia
| | - Isabel Salcedo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain
| |
Collapse
|
3
|
Castillo L, Lescano L, Marfil S, Barbosa S. Hydrophilic cloth by surface modification of polypropylene fabrics with mineral particles. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Luciana Castillo
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - Leticia Lescano
- Departamento de Geología Universidad Nacional del Sur (UNS) – CGAMA (CIC‐UNS) Bahía Blanca Argentina
| | - Silvina Marfil
- Departamento de Geología Universidad Nacional del Sur (UNS) – CGAMA (CIC‐UNS) Bahía Blanca Argentina
| | - Silvia Barbosa
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| |
Collapse
|
4
|
Activated Carbon-Loaded Titanium Dioxide Nanoparticles and Their Photocatalytic and Antibacterial Investigations. Catalysts 2022. [DOI: 10.3390/catal12080834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activated carbon doping TiO2 nanoparticles were synthesised by zapota leaf extract using the co-precipitation method. The bio-constituents of plant compounds were used in the reactions of stabilization and reductions. The carbon loading on the TiO2 nanoparticles was characterised by XRD, FTIR, UV-DRS, SEM with EDX, and TEM analysis. The loading of activated carbon onto the TiO2 nanoparticles decreased the crystallite size and optical bandgap, and their doping improved the surface structure of AC/TiO2 nanoparticles. Mesoporous/microporous instability was remodified from the activated carbon, which was visualised using SEM and TEM analysis, respectively. The photocatalytic dye degradation of Rh-B dye was degraded in TiO2 and AC/TiO2 nanoparticles under visible light irradiation. The degradation efficiencies of TiO2 and AC/TiO2 nanoparticles were 73% and 91%, respectively. The bacterial abilities of TiO2 and AC/TiO2 nanoparticles were examined by E. coli and S. aureus. The water reclamation efficiency and bactericidal effect of TiO2 and AC/TiO2 nanoparticles were examined via catalytic dye degradation and bacterial efficiency of activated carbon-doped titanium dioxide nanoparticles.
Collapse
|